首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
于雅楠  卫红  陈静 《自动化学报》2021,47(6):1460-1466
针对移动机器人视觉同步定位与地图创建中由于相机大角度转动造成的帧间匹配失败以及跟踪丢失等问题, 提出了一种基于局部图像熵的细节增强视觉里程计优化算法. 建立图像金字塔, 划分图像块进行均匀化特征提取, 根据图像块的信息熵判断其信息量大小, 将对比度低以及梯度变化小的图像块进行删除, 减小图像特征点计算量. 对保留的图像块进行亮度自适应调整, 增强局部图像细节, 尽可能多地提取能够表征图像信息的局部特征点作为相邻帧匹配以及关键帧匹配的关联依据. 结合姿态图优化方法对位姿累计误差进行局部和全局优化, 进一步提高移动机器人系统性能. 采用TUM数据集测试验证, 由于提取了更能反映物体纹理以及形状的特征属性, 本文算法的运动跟踪成功率最高可提升至60 % 以上, 并且测量的轨迹误差、平移误差以及转动误差都有所降低. 与目前ORB-SLAM2系统相比, 本文提出的算法不但提高了移动机器人视觉定位精度, 而且满足实时SLAM的应用需要.  相似文献   

2.
针对目前移动机器人视觉SLAM(simultaneous localization and mapping)研究中存在的实时性差、精确度不高、无法稠密化建图等问题,提出了一种基于RGB-D数据的实时 SLAM算法。在本算法前端处理中,采用了鲁棒性与实时性更好的ORB特征检测。利用 RANSAC 算法对可能存在的误匹配点进行剔除完成初始匹配,对所得内点进行PNP求解,用于机器人相邻位姿的增量估计。在后端优化中,设计了一种遵循图优化思想的非线性优化方法对移动机器人位姿进行优化。同时结合闭环检测机制,提出了一种点云优化算法,用于抑制系统的累积误差,进一步提升位姿与点云的精确性。实验验证了本文所提方法能够迅速、准确地重构出稠密化的三维环境模型。  相似文献   

3.
方正  赵世博  李昊来 《机器人》2019,41(2):185-196,241
为了克服移动机器人在视觉退化场景下的位姿估计问题,通过将稠密的深度流与稀疏几何特征相结合,提出了一种实时、鲁棒和低漂移的深度视觉SLAM(同时定位与地图构建)算法.该算法主要由3个优化层组成,基于深度流的视觉里程计层、基于ICP(迭代最近点)的位姿优化层和基于位姿图的优化层.基于深度流的视觉里程计层通过建立深度变化约束方程实现相机帧间快速的6自由度位姿估计;基于ICP的位姿优化层通过构建局部地图来消除局部漂移;基于位姿图的优化层从深度信息中提取、匹配稀疏几何特征,从而建立闭环约束并通过位姿图来实现全局位姿优化.对本文所提出的算法分别在TUM数据集和实际场景中进行了性能测试.实验结果表明本文的前端算法的性能优于当前深度视觉主流算法,后端算法可以较为鲁棒地建立闭环约束并消除前端位姿估计所产生的全局漂移.  相似文献   

4.
后端轨迹优化是视觉同步定位与建图系统的重要组成部分,可以显著地提高定位精度.然而,现有的基于捆集约束法的优化方法在大场景中计算量大,并且无法应用于端到端视觉里程计.针对这个问题,提出了一种在前端采用2个视觉里程计的后端通用位姿图优化方法,可以应用于端到端视觉里程计.该方法采用一个高速低精度的端到端视觉里程计以高频率运行...  相似文献   

5.
黄泽霞  邵春莉 《机器人》2023,(6):756-768
本综述涵盖了深度学习技术应用到SLAM(同步定位与地图创建)领域的最新研究成果,重点介绍和总结了深度学习在前端跟踪、后端优化、语义建图和不确定性估计中的研究成果,展望了深度学习下视觉SLAM的发展趋势,为后继者了解与应用深度学习技术、研究移动机器人自主定位和建图问题的可行性方案提供助力。  相似文献   

6.
同时定位与地图构建(SLAM)是当前机器人定位导航的研究热点。从优化模型、优化算法及对结果的评估阐述了基于图优化的SLAM后端优化。在建模方面,分析了动态贝叶斯网络建模、因子图建模和马尔可夫图建模;讨论了后端优化的四种方法,即最小二乘优化方法、松弛优化方法、随机梯度下降优化方法和流形优化四种方法。在结果评估方面,阐述了χ2误差和MSE误差对结果的评估方法。最后,结合当前研究热点对SLAM的发展作出了展望。  相似文献   

7.
视觉SLAM是指相机作为传感器进行自身定位同步创建环境地图。SLAM在机器人、无人机和无人车导航中具有重要作用,定位精度会影响避障精度,地图构建质量直接影响后续路径规划等算法的性能,是智能移动体应用的核心算法。本文介绍主流的视觉SLAM系统架构,包括几种最常见的视觉传感器,以及前端的功能和基于优化的后端。并根据视觉SLAM系统的度量地图的种类不同将视觉SLAM分为稀疏视觉SLAM、半稠密视觉SLAM和稠密视觉SLAM 3种,分别介绍其标志性成果和研究进展,提出视觉SLAM目前存在的问题以及未来可能的发展。  相似文献   

8.
针对目前视觉SLAM方法鲁棒性差、耗时高,使系统定位不够精确的问题,提出了一种基于点线特征融合的视觉惯性SLAM算法。首先通过短线剔除和近似线段合并策略改进LSD(line segment detection)提取质量,以提高线特征检测的速率和准确度;然后在后端优化中有效融合了点、线和IMU数据,建立最小化目标函数进行优化,得到更精确的相机位姿;最后在EuRoC数据集和现实走廊场景进行了实验验证。实验表明,所提算法可以有效提升线特征提取的质量和速度,同时有效提高了SLAM系统的定位精度,获得更为丰富的点线结构地图。  相似文献   

9.
针对基于图论的同时定位与制图中,非线性约束方程组维数随机器人运行距离和时间的增加而不断增大的问题,提出一种基于信息增益的图精简算法.该算法通过评估精简前后特征点信息矩阵相对变化,删除观测信息量小于给定阈值的机器人位姿及相应的观测,达到显著简化优化问题的目的.根据测量球形协方差矩阵假设,给出了信息增益的精确和近似计算方法.通过恢复性图剪枝方法,确保图精简过程中的连通性.蒙特卡洛仿真和开源实验数据计算结果表明,在不引入明显的优化误差前提下,该方法可实现位姿和特征点90%的精简,显著提高图优化效率.  相似文献   

10.
回环检测又被称为位置识别,是“同步定位与建图”(Simultaneous Localization And Mapping, SLAM)系统中根据图像间的相似度判断运动轨迹是否经过重复地点(即存在回环)的功能,起到阶段性消除累积误差的作用。聚焦于视觉SLAM系统这一特定主题下的回环检测主题进行研究,概述了SLAM系统的基本功能与基本组成,分析了视觉SLAM系统中回环检测的原理与工作流程、前置问题、评测指标。剖析了回环检测发展过程中产生的系列方法,归类了视觉SLAM系统中回环检测存在的两类算法——基于词袋模型的回环检测算法和基于深度学习的回环检测算法,并对这两类算法的原理及优缺点进行了深入分析与总结。分析表明,基于词袋模型的回环检测算法因其在实时性上的优势仍处于主流,基于深度学习的回环检测算法具有较好的准确率和鲁棒性,但受限于设备对计算资源的分配,这一类做法如何应用于注重实时性的视觉SLAM系统仍是亟待解决的问题。最后,对回环检测面临的挑战和存在的问题进行了分析与展望。  相似文献   

11.
徐君  张国良  敬斌  张璐 《机器人》2012,34(4):492-497,504
提出一种将联合极大似然方法(JML)和遗传算法相结合解决SLAM数据关联问题的方法,简称GAJML.该方法采用"关联门"缩小数据关联的解空间范围,提高搜索效率;利用数据关联解的联合极大似然值作为适应度值,种群的初始化采用了自适应策略以提高算法计算速度.与单匹配最近邻(ICNN)和JML方法的对比实验表明该方法相比于ICNN方法耗时增加很少实时性好,数据关联正确率接近JML准确度高,并能够有效克服闭环问题引起的定位累积误差增长.  相似文献   

12.
In recent years, reconstructing a sparse map from a simultaneous localization and mapping (SLAM) system on a conventional CPU has undergone remarkable progress. However, obtaining a dense map from the system often requires a high-performance GPU to accelerate computation. This paper proposes a dense mapping approach which can remove outliers and obtain a clean 3D model using a CPU in real-time. The dense mapping approach processes keyframes and establishes data association by using multi-threading technology. The outliers are removed by changing detections of associated vertices between keyframes. The implicit surface data of inliers is represented by a truncated signed distance function and fused with an adaptive weight. A global hash table and a local hash table are used to store and retrieve surface data for data-reuse. Experiment results show that the proposed approach can precisely remove the outliers in scene and obtain a dense 3D map with a better visual effect in real-time.   相似文献   

13.
董海巍  陈卫东 《机器人》2008,30(3):1-200
随着SLAM技术的不断发展,计算效率已经成为制约SLAM发展的主要因素.所提出的算法从稀疏化的角度对扩展信息滤波SLAM算法进行改进.根据信息矩阵几乎稀疏的特点,该算法在合理稀疏化信息矩阵的同时利用环闭合检测技术,不仅大大提高了算法的计算效率,而且所得到的估计结果也很精确.通过仿真对信息矩阵稀疏化、算法效率、重定位以及误差和协方差四个关键问题进行了分析.分别就室内具有摄像头的两轮机器人和室外具有激光雷达的四轮机器人的情况进行了实验讨论.仿真与实验结果表明了所提算法的有效性.  相似文献   

14.
赵一路  陈雄  韩建达 《机器人》2010,32(5):655-660
针对室外环境中的机器人“绑架”问题,提出了基于地图匹配的SLAM方法.该方法舍弃了机器人里程计信息, 只利用局部地图和全局地图的图形相关性进行机器人定位.方法的核心是多重估计数据关联,并将奇异值分解应用到机器人位姿计算中.利用Victoria Park数据集将本算法与基于扩展卡尔曼滤波器的方法进行比较,实验结果证明了本文提出的算法的有效性.  相似文献   

15.
传统的RatSLAM算法中视觉处理受环境、光照的影响大,进而导致建图精度及稳定性下降。因此,提出了一种快速增量式视觉处理方法克服原RatSLAM系统中的视觉处理的缺陷。以一个改进型的二叉搜索树为检索算法,通过动态岛屿机制对图像进行分组,最终通过序列匹配的形式实现环境识别,达到了在线、准确、快速识别环境的目的。实验结果表明,所提算法的位置识别准确率高于99%,召回率高于80%,平均处理时间低于50ms。本系统的闭环性能、时间性能及建图稳定性均显著优于现有方案,进一步证明了基于快速增量式视觉处理方法的鲁棒性、高效性。  相似文献   

16.
室内环境中存在丰富的语义信息,可以使机器人更好地理解环境,提高机器人位姿估计的准确性。虽然语义信息在机器人同时定位与地图构建(SLAM)领域得到了深入研究和广泛应用,但是在环境准确感知、语义特征提取和语义信息利用等方面还存在着很多困难。针对上述难点,提出了一种基于视觉惯性里程计算法与语义信息相结合的新方法,该方法通过视觉惯性里程计来估计机器人的状态,通过校正估计,构建从语义检测中提取的几何表面的稀疏语义地图;通过将检测到的语义对象的几何信息与先前映射的语义信息相关联来解决视觉惯性里程计和惯性测量单元的累积误差问题。在室内环境中对装备RGB-D深度视觉和激光雷达的无人机进行验证实验,结果表明,该方法比视觉惯性里程计算法取得了更好的结果。应用结合语义信息和视觉惯性里程计的SLAM算法表现出很好的鲁棒性和准确性,该方法能提高无人机导航精度,实现无人机智能自主导航。  相似文献   

17.
介绍了一种同时定位与采样环境地图创建(SLASEM)中的数据关联方法.针对地图中的采样环境粒子与实际环境之间没有一一对应性、传统的马氏距离小能描述SLASEM中两个物体之间相似性的特点,提出了两个点集合之间的一种广义距离函数,并利用该距离函数进行数据关联.同时,提出了基于环境拓扑结构的方法解决多重数据关联问题,并且利用前一时刻的数据关联的结果辅助当前时刻的数据关联.最后,用两个室内环境的实验验证了所提算法的有效性.  相似文献   

18.
在研究领域,基于滤波和基于优化是两种实现视觉惯性SLAM(同时定位与地图创建)的主导方法.本文基于这两种方法介绍视觉惯性SLAM,说明了视觉惯性SLAM的最新研究进展和关键问题,对比了几种代表性的视觉惯性SLAM框架,并对未来进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号