共查询到20条相似文献,搜索用时 62 毫秒
1.
针对移动机器人视觉同步定位与地图创建中由于相机大角度转动造成的帧间匹配失败以及跟踪丢失等问题, 提出了一种基于局部图像熵的细节增强视觉里程计优化算法. 建立图像金字塔, 划分图像块进行均匀化特征提取, 根据图像块的信息熵判断其信息量大小, 将对比度低以及梯度变化小的图像块进行删除, 减小图像特征点计算量. 对保留的图像块进行亮度自适应调整, 增强局部图像细节, 尽可能多地提取能够表征图像信息的局部特征点作为相邻帧匹配以及关键帧匹配的关联依据. 结合姿态图优化方法对位姿累计误差进行局部和全局优化, 进一步提高移动机器人系统性能. 采用TUM数据集测试验证, 由于提取了更能反映物体纹理以及形状的特征属性, 本文算法的运动跟踪成功率最高可提升至60 % 以上, 并且测量的轨迹误差、平移误差以及转动误差都有所降低. 与目前ORB-SLAM2系统相比, 本文提出的算法不但提高了移动机器人视觉定位精度, 而且满足实时SLAM的应用需要. 相似文献
2.
针对目前移动机器人视觉SLAM(simultaneous localization and mapping)研究中存在的实时性差、精确度不高、无法稠密化建图等问题,提出了一种基于RGB-D数据的实时 SLAM算法。在本算法前端处理中,采用了鲁棒性与实时性更好的ORB特征检测。利用 RANSAC 算法对可能存在的误匹配点进行剔除完成初始匹配,对所得内点进行PNP求解,用于机器人相邻位姿的增量估计。在后端优化中,设计了一种遵循图优化思想的非线性优化方法对移动机器人位姿进行优化。同时结合闭环检测机制,提出了一种点云优化算法,用于抑制系统的累积误差,进一步提升位姿与点云的精确性。实验验证了本文所提方法能够迅速、准确地重构出稠密化的三维环境模型。 相似文献
3.
李庄岩;李鹏飞;王圣元;赵雪旭 《工业控制计算机》2025,(3):131-133
针对现有的二维同步定位和建图(SLAM)方法在室内环境下建图精确度低、系统资源占用较高等问题,设计了一种基于图优化后端的激光SLAM方法。该方法利用激光点云时间与空间上的冗余进行实时压缩,并在后端的图优化框架上,将后端优化中对高阶矩阵求最优解问题等价为黎曼流形问题来求解,以此来提高求解精度和求解速度。将设计方法与目前常用的方法在PR2数据集上进行对比实验,以验证所设计方法的可行性与精确度。实验结果表明,该设计方法在建图精确度和位姿估计精度方面均有所提高,且系统资源占用也有所降低。 相似文献
4.
为了克服移动机器人在视觉退化场景下的位姿估计问题,通过将稠密的深度流与稀疏几何特征相结合,提出了一种实时、鲁棒和低漂移的深度视觉SLAM(同时定位与地图构建)算法.该算法主要由3个优化层组成,基于深度流的视觉里程计层、基于ICP(迭代最近点)的位姿优化层和基于位姿图的优化层.基于深度流的视觉里程计层通过建立深度变化约束方程实现相机帧间快速的6自由度位姿估计;基于ICP的位姿优化层通过构建局部地图来消除局部漂移;基于位姿图的优化层从深度信息中提取、匹配稀疏几何特征,从而建立闭环约束并通过位姿图来实现全局位姿优化.对本文所提出的算法分别在TUM数据集和实际场景中进行了性能测试.实验结果表明本文的前端算法的性能优于当前深度视觉主流算法,后端算法可以较为鲁棒地建立闭环约束并消除前端位姿估计所产生的全局漂移. 相似文献
5.
后端轨迹优化是视觉同步定位与建图系统的重要组成部分,可以显著地提高定位精度.然而,现有的基于捆集约束法的优化方法在大场景中计算量大,并且无法应用于端到端视觉里程计.针对这个问题,提出了一种在前端采用2个视觉里程计的后端通用位姿图优化方法,可以应用于端到端视觉里程计.该方法采用一个高速低精度的端到端视觉里程计以高频率运行,同时一个低速高精度的视觉里程计以低频率运行,局部优化通过2个里程计提供的约束条件使用高斯-牛顿法迭代优化;在全局优化中基于关键帧进行场景匹配与局部优化同时进行.实验证明,应用该优化方法的同步定位与建图系统可以在KITTI数据集上实时运行,相较于2个视觉里程计都取得了精度上的较大提升,并且对比现今开源的几种应用后端轨迹优化的著名同步定位与建图方法,在轨迹误差、绝对轨迹误差、旋转误差和相对位姿误差上均取得了较低的误差,兼顾了传统方法精度的优势和端到端方法速度上的优点.除此以外,该优化方法还可以适用于其他更多的视觉里程计. 相似文献
6.
7.
8.
视觉SLAM是指相机作为传感器进行自身定位同步创建环境地图。SLAM在机器人、无人机和无人车导航中具有重要作用,定位精度会影响避障精度,地图构建质量直接影响后续路径规划等算法的性能,是智能移动体应用的核心算法。本文介绍主流的视觉SLAM系统架构,包括几种最常见的视觉传感器,以及前端的功能和基于优化的后端。并根据视觉SLAM系统的度量地图的种类不同将视觉SLAM分为稀疏视觉SLAM、半稠密视觉SLAM和稠密视觉SLAM 3种,分别介绍其标志性成果和研究进展,提出视觉SLAM目前存在的问题以及未来可能的发展。 相似文献
9.
针对目前视觉SLAM方法鲁棒性差、耗时高,使系统定位不够精确的问题,提出了一种基于点线特征融合的视觉惯性SLAM算法。首先通过短线剔除和近似线段合并策略改进LSD(line segment detection)提取质量,以提高线特征检测的速率和准确度;然后在后端优化中有效融合了点、线和IMU数据,建立最小化目标函数进行优化,得到更精确的相机位姿;最后在EuRoC数据集和现实走廊场景进行了实验验证。实验表明,所提算法可以有效提升线特征提取的质量和速度,同时有效提高了SLAM系统的定位精度,获得更为丰富的点线结构地图。 相似文献
10.
回环检测又被称为位置识别,是“同步定位与建图”(Simultaneous Localization And Mapping, SLAM)系统中根据图像间的相似度判断运动轨迹是否经过重复地点(即存在回环)的功能,起到阶段性消除累积误差的作用。聚焦于视觉SLAM系统这一特定主题下的回环检测主题进行研究,概述了SLAM系统的基本功能与基本组成,分析了视觉SLAM系统中回环检测的原理与工作流程、前置问题、评测指标。剖析了回环检测发展过程中产生的系列方法,归类了视觉SLAM系统中回环检测存在的两类算法——基于词袋模型的回环检测算法和基于深度学习的回环检测算法,并对这两类算法的原理及优缺点进行了深入分析与总结。分析表明,基于词袋模型的回环检测算法因其在实时性上的优势仍处于主流,基于深度学习的回环检测算法具有较好的准确率和鲁棒性,但受限于设备对计算资源的分配,这一类做法如何应用于注重实时性的视觉SLAM系统仍是亟待解决的问题。最后,对回环检测面临的挑战和存在的问题进行了分析与展望。 相似文献
11.
12.
检测和分割场景中动态物体对于建立一致性地图至关重要.针对当前点云动态物体检测算法依赖大量含有动态属性标注的数据、限制激光雷达扫描方式等问题,提出了一种基于连续点云的动态物体检测算法.将待预测点云、相邻帧点云以及通过SLAM(simultaneous localization and mapping)得到的位姿信息作为输入,利用点云场景流估计算法逐点估计移动情况,结合点云聚类、主成分分析(principal component analysis,PCA)等技术,整合场景流结果以获取实例级移动信息以判断物体的动态属性,并将点云语义分割作为判别点是否属于可移动类别的插件以提升动态物体识别精度.所提算法不需要具有动态属性的标注数据进行训练,并且对传感器的扫描方式、生成的点云数没有任何限制;与现有最先进的方法进行对比,具有易于训练、判断准确、结果鲁棒等特性. 相似文献
13.
14.
针对单独依据马氏距离(Mahalanobis distance)的数据关联(Data association, DA)算法不能保证输出正确结果的问题, 结合VorSLAM (Voronoi partition based SLAM)算法所采用的混合地图表示方法的特点, 本文提出了一个基于多规则的数据关联方法. 该数据关联方法依据的规则包括局部搜索规则、传感器观测特征的单向性规则、 马氏距离规则和轮廓匹配规则,诸个规则在每个数据关联周期依次执行. 局部搜索规则和传感器观测特征的单向性规则可以有效地降低数据关联的搜索空间,同时可避免一类潜在的数据关联错误; 马氏距离利用了特征参数表示的特征位置信息寻找多个可能的数据关联假设; 根据VorSLAM算法中局部地图描述了产生对应特征的局部环境轮廓信息, 轮廓匹配规则从多个可能的数据关联假设中识别出正确的数据关联假设. 基于多规则的数据关联方法系统可靠地解决了VorSLAM算法中的数据关联问题, 方法的有效性通过两个室内环境的实验得到了验证. 相似文献
15.
16.
17.
在室内同时定位与建图(SLAM)的实际应用中,对称单一结构环境易造成激光SLAM错误建图,低质量光照或低纹理环境易造成视觉SLAM失效.针对上述室内退化环境,提出一种将激光、视觉、惯性测量单元(IMU)进行紧耦合的LVI-SLAM方法.在该方法前端,设计视觉评价环节对视觉信息置信度进行自适应调整;在该方法后端,进行位姿图优化以及多传感器回环抑制累积误差.视觉评价实验、单走廊实验以及大场景建图实验的结果证明了该方法的鲁棒性和精确性.在面积为1050 m2的复杂室内环境下,采用该方法建图误差为0.9%. 相似文献
18.
基于图优化的同时定位与建图(SLAM)系统中,含有大噪声的回环边可能严重阻碍优化器迅速收敛到最优解,显著降低定位精确性和地图一致性。因此,针对大噪声回环边的优化算法的鲁棒性至关重要。该文引入K-means聚类思想,对回环边残差值进行分类,进而建立了一种新的残差阈值模型,自适应调整回环边在优化时的权重,减少回环边对优化的影响,然后,基于迭代重加权最小二乘的思想形成了RW-RLSPGO 算法(residual weighted enhancement for recursive least squares pose graph optimization algorithm,RW-RLSPGO)。最后,在模拟和真实的PGO数据集上进行蒙特卡罗实验,实验结果表明RW-RLSPGO算法在准确性和鲁棒性方面都取得了显著的提高,验证了其在大噪声环境下的有效性。 相似文献
19.
视觉—惯性导航定位技术是一种利用视觉传感器和惯性传感器实现载体的自定位和周围环境感知的无源导航定位方式,可以在全球定位系统(global positioning system,GPS)拒止环境下实现载体6自由度位姿估计。视觉和低精度惯性传感器具有体积小和价格低的优势,得益于二者在导航定位任务中的互补特性,视觉—惯性导航系统(visual inertial navigation system,VINS)引起了极大关注,在移动端的虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)以及无人系统的自主导航任务中发挥了重要作用,具有重要的理论研究价值和实际应用需求。本文介绍视觉—惯性导航系统,总结概括该系统中初始化、视觉前端处理、状态估计、地图的构建与维护以及信息融合等关键技术的研究进展。对非理想环境下及基于学习方法的视觉—惯性导航定位算法等热点问题进行综述,总结用于算法评测的方法及标准数据集,阐述该技术在实际应用中所面临的主要问题,并针对这些问题对该领域未来的发展趋势进行展望。 相似文献
20.
In recent years, reconstructing a sparse map from a simultaneous localization and mapping (SLAM) system on a conventional CPU has undergone remarkable progress. However, obtaining a dense map from the system often requires a high-performance GPU to accelerate computation. This paper proposes a dense mapping approach which can remove outliers and obtain a clean 3D model using a CPU in real-time. The dense mapping approach processes keyframes and establishes data association by using multi-threading technology. The outliers are removed by changing detections of associated vertices between keyframes. The implicit surface data of inliers is represented by a truncated signed distance function and fused with an adaptive weight. A global hash table and a local hash table are used to store and retrieve surface data for data-reuse. Experiment results show that the proposed approach can precisely remove the outliers in scene and obtain a dense 3D map with a better visual effect in real-time. 相似文献