共查询到15条相似文献,搜索用时 64 毫秒
1.
三星座时差定位是一个非线性估计问题,当辐射源高程所带来的误差无法忽略时,仍然使用基于WGS-84地球模型的时差定位算法对目标进行跟踪定位的方法具有一定的局限性.当数据残缺时,传统的定位算法无法精确估计高程目标位置.为了提高传统的基于三星的时差定位系统的跟踪性能,提出了基于UKF滤波的TDOA/FDOA联合定位算法对单个目标的位置和速度进行估计.仿真结果证明了TDOA/FDOA联合定位算法拥有更好的跟踪性能,以及该算法的稳定性和有效性 相似文献
2.
针对单站外辐射源条件下的目标定位问题,提出了一种基于最大似然的时差-频差联合定位算法。首先根据时差和频差的观测方程,构建目标位置和速度的最大似然估计模型。然后采用牛顿迭代算法对最大似然估计模型求解,得到目标位置和速度估计。最后,推导了算法的克拉美罗界和理论误差,并证明了二者相等。仿真结果表明,算法定位精度高于两步加权最小二乘算法和约束总体最小二乘算法,在测量误差较高时仍能达到克拉美罗界。通过对系统几何精度因子图的分析,确定目标及外辐射源数量和位置也是影响定位精度的重要因素。 相似文献
3.
5.
在LOS环境下,Chan算法有着较好的定位精度,基于Chan算法的到达时间差/到达角(TDOA/AOA)算法比Chan算法有了进一步提高。但是在NLOS环境下,这些算法的精度都将大大下降,由于AOA的测量值有较大误差,TDOA/AOA方法的精度甚至低于Chan算法。并且这些算法的主要缺点是在第一次加权最小二乘法(WLS)中把移动台的横坐标、纵坐标与移动台到服务基站的距离作为三个相互独立的变量,忽略了三者之间的相关性,因此要进行第二次WLS才能得到定位结果,且最终的解为二值根。对误差的均值和方差进行了估计,修正了TDOA与AOA测量值,用Kalman滤波算法对AOA的值进行了估计,利用移动台坐标与AOA之间的关系将三个变量简化为一个,只需一次WLS即可求得唯一解,减少了计算量,消除了根的模糊性。仿真结果表明,该方法简单,计算量小,有较高的定位精度和较好的稳健性,性能优于Chan算法和基于Chan算法的TDOA/AOA算法。 相似文献
6.
7.
在视距(LOS)环境下,到达时间差(TDOA)和电波到达角(AOA)定位技术可以获得较高的精度,而在非视距(NLOS)环境下,无法得到良好的定位效果.在非理想信道环境下,蜂窝基站和移动终端之间存在多径传输和NLOS传播的问题,这些因素均会影响定位精度.构建LOS和NLOS传播条件下的实际信道环境模型来研究信号的测量误差特性,利用贝叶斯推理的方法对AOA测量值进行估计,从而有效消除附加噪声的干扰.仿真结果表明,在NLOS环境下,该算法的定位性能优于单纯的TDOA和TDOA/AOA算法. 相似文献
8.
毛永毅 《计算机工程与应用》2007,43(35):183-186
基于非视距传播(NLOS)环境下的几何结构单次反射统计信道模型,提出了到达时间差/电波到达角(TDOA/AOA)数据融合定位算法。利用TDOA定位算法和AOA定位算法分别估算移动台(MS)位置,然后利用数据融合方法确定MS位置。仿真结果表明,本文算法在NLOS环境下有较高的定位精度,性能优于TDOA定位算法和AOA定位算法。 相似文献
9.
10.
本文在无线传感器网络定位问题中,考虑了基于到达时间差(Time-Difference-of-Arrival,TDOA)和到达频率差(Frequency-Difference-of-Arrival,FDOA)的移动未知目标定位问题,TDOA/FDOA联合定位可以有效利用传感器的位置和速度信息,提高了定位精度。本文在现有的半正定松弛(Semidefinite Relaxation, SDR)方法的基础上,提出了一种增强半正定松弛方法。通过挖掘现有半正定规划问题中优化变量之间的内在联系并将这些联系转化为凸约束,有效提高了现有半正定松弛方法的紧度,从而使估计的未知目标的位置和速度精度达到了克拉美-罗下界 (Cramer Rao lower bound,CRLB)。仿真结果表明,该方法的性能在大噪声时优于现有方法。 相似文献
11.
12.
The accuracy of a source location estimate is very sensitive to the presence of the random noise in the known sensor positions. This paper investigates the use of calibration sensors, each of which is capable of broadcasting calibration signals to other sensors as well as receiving the signals from the source and other calibration sensors, to reduce the loss in the source localization accuracy due to uncertainties in sensor positions. We begin the study with deriving the Cramer–Rao lower bound (CRLB) for source localization using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements when a single calibration sensor is available. The obtained CRLB result is then extended to the more general case with multiple calibration sensors. The performance improvement due to the use of calibration sensors is established analytically. We then propose a closed-form algorithm that can explore efficiently the calibration sensors to improve the source localization accuracy when the sensor positions are subject to random errors. We prove analytically that the newly developed localization method attains the CRLB accuracy under some mild approximations. Simulations verify the theoretical developments. 相似文献
13.
韩煜 《计算机工程与科学》2017,39(6):1092-1096
针对多用户CDMA信号的时频域重叠特征,提出了一种新颖的时频差高精度估计方法。该方法结合扩频信号的捕获和解扩操作,以较短的信号样本和较低的计算量,仅两次时间-频率分维迭代实现了用户信号分离和时频差估计,再通过时域和频域内插进一步提高估计精度。仿真结果表明,与直接互模糊函数相关法相比,该方法能够有效提高CDMA信号时频差估计精度,降低计算量。 相似文献
14.
Sensor position and velocity uncertainties are known to be able to degrade the source localization accuracy significantly. This paper focuses on the problem of locating multiple disjoint sources using time differences of arrival (TDOAs) and frequency differences of arrival (FDOAs) in the presence of sensor position and velocity errors. First, the explicit Cramér–Rao bound (CRB) expression for joint estimation of source and sensor positions and velocities is derived under the Gaussian noise assumption. Subsequently, we compare the localization accuracy when multiple-source positions and velocities are determined jointly and individually based on the obtained CRB results. The performance gain resulted from multiple-target cooperative positioning is also quantified using the orthogonal projection matrix. Next, the paper proposes a new estimator that formulates the localization problem as a quadratic programming with some indefinite quadratic equality constraints. Due to the non-convex nature of the optimization problem, an iterative constrained weighted least squares (ICWLS) method is developed based on matrix QR decomposition, which can be achieved through some simple and efficient numerical algorithms. The newly proposed iterative method uses a set of linear equality constraints instead of the quadratic constraints to produce a closed-form solution in each iteration. Theoretical analysis demonstrates that the proposed method, if converges, can provide the optimal solution of the formulated non-convex minimization problem. Moreover, its estimation mean-square-error (MSE) is able to reach the corresponding CRB under moderate noise level. Simulations are included to corroborate and support the theoretical development in this paper. 相似文献
15.
Source localization accuracy is very sensitive to sensor location error.This paper performs analysis and develops a solution for locating a moving source using time difference of arrival(TDOA)and frequency difference of arrival(FDOA)measurements with the use of a calibration emitter.Using a Gaussian random signal model,we first derive the Cram′er-Rao lower bound(CRLB)for source location estimate in this scenario.Then we analyze the differential calibration technique which is commonly used in Global Positioning System.It is indicated that the differential calibration cannot attain the CRLB accuracy in most cases.A closed-form solution is then proposed which takes a calibration emitter into account to reduce sensor location error.It is shown analytically that under some mild approximations,our approach is able to reach the CRLB accuracy.Numerical simulations are included to corroborate the theoretical developments. 相似文献