共查询到16条相似文献,搜索用时 62 毫秒
1.
针对鲸鱼优化算法(WOA)在解决高维复杂问题时存在收敛速度慢、全局搜索能力不足的问题,提出一种最优最差个体混合反向学习的WOA(MWOA)。首先,引入一种自适应惯性权重,用于调节寻优前期的步长和寻优后期的种群多样性;其次,提出一种混合反向学习策略并将其融入WOA,以提高算法的收敛精度;最后,引入一种参数非线性衰减策略,以提高其在高维度以及复杂问题上的探索开发能力和收敛速度。将MWOA与WOA、MS-WOA、IWOA对10个基准函数的优化效果进行比较,结果表明MWOA在收敛速度、优化精度上相较对比算法均有所提升。另外,将MWOA与CODE、CPSO、EGWO和DIHS进行比较,结果表明MWOA具有较好的收敛精度。 相似文献
2.
3.
4.
针对鲸鱼优化算法存在探索和开发能力难以协调、易陷入局部最优的不足,提出一种基于混沌搜索策略的鲸鱼优化算法(CWOA).首先,采用混沌反向学习策略产生初始种群,为全局搜索多样性奠定基础;其次,设计收敛因子和惯性权重的非线性混沌扰动协同更新策略以平衡全局探索和局部开发能力;最后,将种群进化更新与最优个体的混沌搜索机制相结合,以减小算法陷入局部最优的概率.对10个基准测试函数和6个复合测试函数进行优化,实验结果表明,CWOA在收敛速度、收敛精度、鲁棒性方面均较对比算法有较大提升. 相似文献
5.
针对电力系统经济负荷分配这一典型的非凸、非线性、组合优化问题,提出一种将基于自适应权重更新策略和差分进化的随机变异策略的鲸鱼优化优化算法(ADWOA)相结合。该算法首先在鲸鱼优化算法中引入了自适应权重来提高WOA的搜索能力,使算法能够在早期执行精细的全局搜索,在后期执行精确的局部搜索,加速寻优算法的迭代,同时由于随机变异策略,会再次更新位置。然后从更新的结果中选择最优位置,以加速种群的收敛,并有效防止种群陷入局部最优将适应度较好的个体信息更快地保留用于下一次鲸鱼优化算法的迭代,提高了求最优解的速度和精度。最后,对多个算法在电力系统经济负荷分配问题进行了测试,验证了基于自适应权重的的鲸鱼优化算法可以更合理地配置电力系统的经济负荷,能够有效找到可行解,避免陷入局部最优,能实现经济负荷的合理分配。 相似文献
6.
针对标准鲸鱼优化算法(whale optimization algorithm,WOA)易陷入局部最优解、收敛精度低、收敛速度慢等问题,提出一种利用混合策略改进的鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MSIWOA)。首先采取精英反向策略初始化种群,提高初始种群质量;其次,采取卡方分布的逆累积分布函数更新收敛因子以实现全局探索和局部开发的平衡;然后利用改进氏族拓扑结构强化种群的全局探索能力,并提高算法收敛速度;最后采取Circle映射产生混沌解,结合贪婪策略保留较优解,以帮助种群跳出局部最优解。通过对10个基准测试函数以及CEC2019测试函数进行仿真实验,结果表明,MSIWOA在收敛精度和收敛速度上均有较明显的提升。 相似文献
7.
混合策略改进的鲸鱼优化算法 总被引:1,自引:0,他引:1
针对标准鲸鱼优化算法易出现搜索速度慢、寻优精度低及早熟收敛等问题,提出一种混合策略改进的鲸鱼优化算法。首先采用混沌映射生成初始种群增加种群多样性,为算法全局搜索奠定基础;然后引入非线性策略改进收敛因子和惯性权重,平衡算法的全局探索与局部开发能力并加快收敛速度;最后根据群体适应度方差设定阈值进行变异操作,避免算法出现早熟收敛的现象。通过对12个典型基准函数进行三方面的性能测试,实验结果表明,改进算法在搜索速度、收敛精度等方面有显著提高,且摆脱陷入局部最优解的能力强。 相似文献
8.
针对原始鲸鱼优化算法(WOA)收敛速度慢、全局搜索能力弱、求解精度低且易陷入局部最优等问题,提出一种混合策略来改进的鲸鱼优化算法(LGWOA)。首先将莱维飞行引入鲸鱼全局搜索的公式中,通过莱维飞行加大全局搜索步长,扩大搜索空间、提高全局搜索能力;其次,在鲸鱼螺旋上升阶段,加入一个自适应权重参数来提高算法的局部搜索能力和求解精度;最后结合遗传算法的交叉变异思想平衡算法的全局搜索和局部搜索能力,维持种群的多样性,规避陷入局部最优。通过对12个基准测试函数从2个角度进行实验对比分析,结果表明,基于混合策略改进的鲸鱼优化算法在收敛速度和求解精度上均有明显提升。 相似文献
9.
10.
11.
为提高鲸鱼优化算法求解复杂函数优化问题的性能,提出一种基于自适应参数及小生境技术的改进鲸鱼优化算法。首先,引入自适应概率阈值协调算法的全局探索及局部开发能力;其次,利用自适应位置权重对鲸鱼位置更新公式进行调整,提高算法的收敛速度及寻优精度;最后,采用预选择小生境技术,避免算法出现早熟收敛的现象。通过对12个典型基准测试函数的仿真表明,改进算法的寻优精度和收敛速度较对比算法均有明显提升,证明了提出的改进策略能有效提高鲸鱼优化算法求解复杂函数优化问题的性能。 相似文献
12.
为了提高多目标鲸鱼优化算法的全局优化性能,提出了一种基于角度惩罚距离的收敛因子非线性递减多目标鲸鱼优化算法IWOA-APD。首先,针对基本多目标鲸鱼算法收敛性和多样性难以平衡的问题,采用角度惩罚距离作为解优劣评价指标。其次,给出了一种基于迭代进度和优化因子的收敛因子指数形式非线性递减策略,该策略可以通过调整优化因子进一步提升优化性能。除此之外,给出了基于融合距离与拥挤度距离的精英集维护机制,从而改善精英集的多样性维护效果。最后,为了验证该算法的有效性,基于五种标准测试函数及一种城市轨道列车速度曲线优化实际算例,在MATLAB2016b GUI平台下采用所提出的IWOA-APD与IWOA、MOWOA、dMOPSO进行对比仿真。仿真结果表明,所提出的IWOA-APD寻到了更理想的优化结果。由此说明,相比于一些性能品质良好的优化算法,IWOA-APD还具有更快的计算速度和更高的全局收敛精度。 相似文献
13.
针对标准鲸鱼优化算法存在的局部搜索能力不足、收敛速度慢等问题,提出了一种自适应鲸鱼快速优化算法AWOA。该算法根据个体的集散程度自适应选择全局搜索或局部搜索,在两者之间实现了动态平衡。针对偏离样本平均位置程度较高的个体引入Levy Flight进行二次优化,进一步扩大搜索区域,保证了算法的全局搜索能力。采用标准测试函数证实了AOWA具有较高的收敛速度及稳定性。将AWOA应用于无人车路径规划问题,仿真结果表明其具有稳定的局部搜索能力和全局搜索能力。 相似文献
14.
15.
为了克服基本鲸鱼优化算法(WOA)在解决作业车间调度问题时存在收敛精度低、容易陷入局部最优的缺陷,利用量子计算与优化思想提出了一种量子鲸鱼优化算法(QWOA),并对其进行了计算复杂度分析、全局收敛性证明及仿真实验。通过对11个作业车间调度问题基准算例的仿真实验发现,与基本鲸鱼优化算法(WOA)、布谷鸟搜索算法(CS)、灰狼优化算法(GWO)相比,QWOA算法在最小值、平均值、寻优成功率等方面具有较优结果。研究表明,量子鲸鱼优化算法在解决作业车间调度问题时,具有更高的收敛精度和更好的全局搜索能力,且能够跳出局部最优。 相似文献
16.
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。 相似文献