首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
针对鲸鱼优化算法(WOA)在解决高维复杂问题时存在收敛速度慢、全局搜索能力不足的问题,提出一种最优最差个体混合反向学习的WOA(MWOA)。首先,引入一种自适应惯性权重,用于调节寻优前期的步长和寻优后期的种群多样性;其次,提出一种混合反向学习策略并将其融入WOA,以提高算法的收敛精度;最后,引入一种参数非线性衰减策略,以提高其在高维度以及复杂问题上的探索开发能力和收敛速度。将MWOA与WOA、MS-WOA、IWOA对10个基准函数的优化效果进行比较,结果表明MWOA在收敛速度、优化精度上相较对比算法均有所提升。另外,将MWOA与CODE、CPSO、EGWO和DIHS进行比较,结果表明MWOA具有较好的收敛精度。  相似文献   

2.
针对传统鲸鱼优化算法收敛速度慢、易陷入局部最优等问题,提出一种基于混合策略改进的鲸鱼优化算法。首先,引入非线性调整策略改进收敛因子,平衡算法的全局探索与局部开发能力并加快算法收敛速度;然后,将自适应权重系数引入鲸鱼位置更新式中,从而提高算法的寻优精度;最后,结合人工蜂群算法的limit阈值思想,使算法能够有效跳出局部最优,改善算法早熟收敛现象。通过对14个基准测试函数在不同维度上的仿真实验表明,改进算法具有较高的寻优精度和较快的收敛速度。  相似文献   

3.
4.
王坚浩  张亮  史超  车飞  丁刚  武杰 《控制与决策》2019,34(9):1893-1900
针对鲸鱼优化算法存在探索和开发能力难以协调、易陷入局部最优的不足,提出一种基于混沌搜索策略的鲸鱼优化算法(CWOA).首先,采用混沌反向学习策略产生初始种群,为全局搜索多样性奠定基础;其次,设计收敛因子和惯性权重的非线性混沌扰动协同更新策略以平衡全局探索和局部开发能力;最后,将种群进化更新与最优个体的混沌搜索机制相结合,以减小算法陷入局部最优的概率.对10个基准测试函数和6个复合测试函数进行优化,实验结果表明,CWOA在收敛速度、收敛精度、鲁棒性方面均较对比算法有较大提升.  相似文献   

5.
针对电力系统经济负荷分配这一典型的非凸、非线性、组合优化问题,提出一种将基于自适应权重更新策略和差分进化的随机变异策略的鲸鱼优化优化算法(ADWOA)相结合。该算法首先在鲸鱼优化算法中引入了自适应权重来提高WOA的搜索能力,使算法能够在早期执行精细的全局搜索,在后期执行精确的局部搜索,加速寻优算法的迭代,同时由于随机变异策略,会再次更新位置。然后从更新的结果中选择最优位置,以加速种群的收敛,并有效防止种群陷入局部最优将适应度较好的个体信息更快地保留用于下一次鲸鱼优化算法的迭代,提高了求最优解的速度和精度。最后,对多个算法在电力系统经济负荷分配问题进行了测试,验证了基于自适应权重的的鲸鱼优化算法可以更合理地配置电力系统的经济负荷,能够有效找到可行解,避免陷入局部最优,能实现经济负荷的合理分配。  相似文献   

6.
针对标准鲸鱼优化算法(whale optimization algorithm,WOA)易陷入局部最优解、收敛精度低、收敛速度慢等问题,提出一种利用混合策略改进的鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MSIWOA)。首先采取精英反向策略初始化种群,提高初始种群质量;其次,采取卡方分布的逆累积分布函数更新收敛因子以实现全局探索和局部开发的平衡;然后利用改进氏族拓扑结构强化种群的全局探索能力,并提高算法收敛速度;最后采取Circle映射产生混沌解,结合贪婪策略保留较优解,以帮助种群跳出局部最优解。通过对10个基准测试函数以及CEC2019测试函数进行仿真实验,结果表明,MSIWOA在收敛精度和收敛速度上均有较明显的提升。  相似文献   

7.
针对原始鲸鱼优化算法(WOA)收敛速度慢、全局搜索能力弱、求解精度低且易陷入局部最优等问题,提出一种混合策略来改进的鲸鱼优化算法(LGWOA)。首先将莱维飞行引入鲸鱼全局搜索的公式中,通过莱维飞行加大全局搜索步长,扩大搜索空间、提高全局搜索能力;其次,在鲸鱼螺旋上升阶段,加入一个自适应权重参数来提高算法的局部搜索能力和求解精度;最后结合遗传算法的交叉变异思想平衡算法的全局搜索和局部搜索能力,维持种群的多样性,规避陷入局部最优。通过对12个基准测试函数从2个角度进行实验对比分析,结果表明,基于混合策略改进的鲸鱼优化算法在收敛速度和求解精度上均有明显提升。  相似文献   

8.
文中首先分析了鲸鱼算法的基本原理和流程。虽然该算法操作简单,参数少,但该算法在搜索过程中对参数随机性的依赖较大,这在很大程度上影响了算法的收敛速度与收敛精度。在原有鲸鱼算法的基础上引入一个惯性权重因子,使算法能够快速收敛于最优解,并用8组常用测试函数对改进算法的性能进行测试。仿真实验表明,改进算法在收敛速度和收敛精度上都优于原始鲸鱼算法,从而证明了算法的有效性。  相似文献   

9.
混合策略改进的鲸鱼优化算法   总被引:1,自引:0,他引:1  
郝晓弘  宋吉祥  周强  马明 《计算机应用研究》2020,37(12):3622-3626,3655
针对标准鲸鱼优化算法易出现搜索速度慢、寻优精度低及早熟收敛等问题,提出一种混合策略改进的鲸鱼优化算法。首先采用混沌映射生成初始种群增加种群多样性,为算法全局搜索奠定基础;然后引入非线性策略改进收敛因子和惯性权重,平衡算法的全局探索与局部开发能力并加快收敛速度;最后根据群体适应度方差设定阈值进行变异操作,避免算法出现早熟收敛的现象。通过对12个典型基准函数进行三方面的性能测试,实验结果表明,改进算法在搜索速度、收敛精度等方面有显著提高,且摆脱陷入局部最优解的能力强。  相似文献   

10.
针对鲸鱼优化算法(WOA)收敛速度慢、收敛精度低的问题,在提升性能的基础上保留WOA的简单性,提出一种改进的WOA。利用分段Logistic混沌映射产生混沌序列对种群位置进行初始化,以维持全局搜索时初始种群的多样性。考虑算法的非线性优化过程和搜索过程中个体状态的差异性,在WOA中引入非线性自适应权重策略,以协调全局探索和局部开发能力。通过仿真测试比较改进算法和WOA在求解6个典型基准函数时的性能,实验结果表明,改进算法在寻优过程中能够保持初始种群多样性,且具有更快的收敛速度和更优的收敛精度。  相似文献   

11.
为了提高多目标鲸鱼优化算法的全局优化性能,提出了一种基于角度惩罚距离的收敛因子非线性递减多目标鲸鱼优化算法IWOA-APD。首先,针对基本多目标鲸鱼算法收敛性和多样性难以平衡的问题,采用角度惩罚距离作为解优劣评价指标。其次,给出了一种基于迭代进度和优化因子的收敛因子指数形式非线性递减策略,该策略可以通过调整优化因子进一步提升优化性能。除此之外,给出了基于融合距离与拥挤度距离的精英集维护机制,从而改善精英集的多样性维护效果。最后,为了验证该算法的有效性,基于五种标准测试函数及一种城市轨道列车速度曲线优化实际算例,在MATLAB2016b GUI平台下采用所提出的IWOA-APD与IWOA、MOWOA、dMOPSO进行对比仿真。仿真结果表明,所提出的IWOA-APD寻到了更理想的优化结果。由此说明,相比于一些性能品质良好的优化算法,IWOA-APD还具有更快的计算速度和更高的全局收敛精度。  相似文献   

12.
基站选址优化是网络通讯中的重要优化问题,对网络通讯质量有着极大的影响.本文基于基站选址优化问题的约束条件,以网络覆盖率作为优化指标,构建一种基站选址优化模型.传统优化算法有着收敛速度慢、易于陷入局部最优等问题,为此本文提出一种鲸鱼优化改进算法.首先,引入收敛因子随着迭代次数非线性递减的自适应改变策略以提升算法收敛能力;...  相似文献   

13.
14.
人工神经网络(ANN)已被应用于获取布里渊光时域分析仪(BOTDA)所测的布里渊频移信息(BFS),然而其存在易陷入局部最优和收敛速度慢等缺点。为了克服上述缺点,本文提出一种基于WOA优化人工神经网络(WOA-NN)快速获取布里渊光纤传感器BFS的方法;随后通过设计非线性收敛因子a,进一步构建基于非线性WOA优化的神经网络(NWOA-NN)用来提取BFS。将提出的2种网络与经典ANN、粒子群优化神经网络(PSO-NN)、遗传算法优化神经网络(GA-NN)等模型进行比较,实验结果表明,本文所提出的WOA-NN模型在提取BOTDA中的温度信息时的性能优于其他3个网络,其所获取的温度的平均RMSE分别低于ANN、PSO-NN和GA-NN约42.66%、52.51%以及45.93%,NWOA-NN模型所获取的平均RMSE进一步优于WOA-NN 19.08%。同时,使用ANN、PSO-NN、GA-NN、WOA-NN和NWOA-NN进行训练所花费的平均时间分别为929.71 s、889.49 s、699.36 s、580.06 s和549.12 s,所提出的2个网络训练时间表现亦较好。  相似文献   

15.
针对标准WOA算法初始种群分布不均、收敛速度较慢、全局搜索能力弱且易陷入局部最优等问题,提出一种混合策略改进的鲸鱼优化算法。采用Sobol序列初始化种群以使初始解在解空间分布更均匀;通过非线性时变因子和惯性权重平衡并提高全局搜索及局部开发能力,并结合随机性学习策略增加迭代过程中种群的多样性;引入柯西变异提升算法跳出局部最优的能力。通过对12个基准函数和一个水资源需求预测模型的参数估计进行优化实验,结果表明,基于混合策略改进的鲸鱼优化算法在寻优精度及收敛速度上均有明显提升。  相似文献   

16.
新型的动态粒子群优化算法   总被引:2,自引:0,他引:2  
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号