共查询到18条相似文献,搜索用时 93 毫秒
1.
目前,藏文抽取式文本摘要方法主要是提取文本自身的特征,对句子进行打分,不能挖掘句子中深层的语义信息。该文提出了一种改进的藏文抽取式摘要生成方法。该方法将外部语料库的信息以词向量的形式融入到TextRank算法,通过TextRank与词向量的结合,把句子中每个词语映射到高维词库形成句向量,进行迭代为句子打分,并选取分值最高的句子重新排序作为文本的摘要。实验结果表明,该方法能有效提升摘要质量。该文还在传统ROUGE评测方法的基础上,提出了一种采用句子语义相似度计算的方式进行摘要评测的方法。 相似文献
2.
目前,藏文抽取式文本摘要方法主要是提取文本自身的特征,对句子进行打分,不能挖掘句子中深层的语义信息。该文提出了一种改进的藏文抽取式摘要生成方法。该方法将外部语料库的信息以词向量的形式融入到TextRank算法,通过TextRank与词向量的结合,把句子中每个词语映射到高维词库形成句向量,进行迭代为句子打分,并选取分值最高的句子重新排序作为文本的摘要。实验结果表明,该方法能有效提升摘要质量。该文还在传统ROUGE评测方法的基础上,提出了一种采用句子语义相似度计算的方式进行摘要评测的方法。 相似文献
3.
TextRank算法在自动提取中文文本摘要时只考虑句子间的相似性,而忽略了词语间的语义相关信息及文本的重要全局信息.对此,提出一种基于改进TextRank的文本摘要自动提取算法(SW-TextRank).通过Word2 Vec训练的词向量来计算句子之间的相似度,并综合考虑句子位置、句子与标题的相似度、关键词的覆盖率、关键句子以及线索词等影响句子权重的因素,从而优化句子权重;对得到的候选摘要句群进行冗余处理,选取适量排序靠前的句子并根据其在原文中的顺序重新排列得到最终文本的摘要.实验结果表明,SW-TextRank算法生成摘要的准确性比TextRank算法更高,摘要生成质量更好. 相似文献
4.
在对中文文本进行摘要提取时,传统的TextRank算法只考虑节点间的相似性,忽略了文本的其他重要信息。首先,针对中文单文档,在现有研究的基础上,使用TextRank算法,一方面考虑句子间的相似性,另一方面,使TextRank算法与文本的整体结构信息、句子的上下文信息等相结合,如文档句子或者段落的物理位置、特征句子、核心句子等有可能提升权重的句子,来生成文本的摘要候选句群;然后对得到的摘要候选句群做冗余处理,以除去候选句群中相似度较高的句子,得到最终的文本摘要。最后通过实验验证,该算法能够提高生成摘要的准确性,表明了该算法的有效性。 相似文献
7.
8.
经典的TextRank算法在文档的自动摘要提取时往往只考虑了句子节点间的相似性,而忽略了文档的篇章结构及句子的上下文信息。针对这些问题,结合中文文本的结构特点,提出一种改进后的iTextRank算法,通过将标题、段落、特殊句子、句子位置和长度等信息引入到TextRank网络图的构造中,给出改进后的句子相似度计算方法及权重调整因子,并将其应用于中文文本的自动摘要提取,同时分析了算法的时间复杂度。最后,实验证明iTextRank比经典的TextRank方法具有更高的准确率和更低的召回率。 相似文献
9.
文本自动摘要技术在网页搜索和网页内容推荐等多个领域都有着非常广阔的应用前景。经典的文本摘要算法采用统计学的方法来提取文章关键字,进而提取主题句。这种方法在一定程度上忽略了文本的语义和语法信息。近年来,分布式词向量嵌入技术已经应用到文本检索当中,基于该技术提出了一种词向量化的自动文本摘要方法,该方法主要分为4个步骤:词向量生成、基于词向量的段向量生成、关键词提取和主题句抽取,最终实现文本段落的自动摘要。实验结果表明,改进的文本自动摘要方法能够有效提取主题句。 相似文献
10.
针对维吾尔语文本的分类问题,提出一种基于TextRank算法和互信息相似度的维吾尔文关键词提取及文本分类方法。首先,对输入文本进行预处理,滤除非维吾尔语的字符和停用词;然后,利用词语语义相似度、词语位置和词频重要性加权的TextRank算法提取文本关键词集合;最后,根据互信息相似度度量,计算输入文本关键词集和各类关键词集的相似度,最终实现文本的分类。实验结果表明,该方案能够 提取出具有较高识别度的关键词,当关键词集大小为1250时,平均分类率达到了91.2%。 相似文献
11.
自动文摘技术应尽可能获取准确的相似度以确定句子或段落的权重,但目前常用的基于向量空间模型的计算方法却忽视句子、段落、文本中词的顺序.提出了一种新的基于相邻词序组的相似度度量方法并应用于文本的自动摘要,采用基于聚类的方法实现了词序组的向量表示并以此刻画句子、段落、文本,通过线性插值将基于不同长度词序组的相似度结果予以综合.同时,提出了新的基于含词序组重要性累计度的句子或段落的权重指标.实验证明利用词序信息可有效提高自动文摘质量. 相似文献
12.
随着网络信息日益增多,文本摘要变得越来越重要。大多数现有的文摘方法采用的是独立于查询的方法来生成文摘。论文提出了一种将基于查询条件的句子权值计算融入句子重要度计算的文摘技术,实验结果表明该方法生成的文摘能有效提高用户搜索信息的速度并提高准确性。 相似文献
13.
针对传统图模型方法进行文本摘要时只考虑统计特征或浅层次语义特征,缺乏对深层次主题语义特征的挖掘与利用,提出了融合主题特征后多维度度量的文本自动摘要方法MDSR(multi-dimension summarization rank)。首先利用LDA主题模型对文本主题语义信息进行挖掘,定义了主题重要度以衡量主题特征对句子重要程度的影响;然后结合主题特征、统计特征和句间相似度,改进了图模型节点的概率转移矩阵的构建方式;最后根据句子节点权重进行摘要的抽取与度量。实验结果显示,当主题特征、统计特征及句间相似度权重比例达到3:4:3时,MDSR方法的ROUGE评测值达到最佳,ROUGE-1、ROUGE-2、ROUGE-SU4值分别达到53.35%、35.18%和33.86%,优于对比方法,表明了融入主题特征后的文本摘要方法有效提高了摘要抽取的准确性。 相似文献
14.
针对当前生成式文本摘要方法存在的语义信息利用不充分、摘要精度不够等问题,提出一种基于双编码器的文本摘要方法。首先,通过双编码器为序列映射(Seq2Seq)架构提供更丰富的语义信息,并对融入双通道语义的注意力机制和伴随经验分布的解码器进行了优化研究;然后,在词嵌入生成技术中融合位置嵌入和词嵌入,并新增词频-逆文档频率(TF-IDF)、词性(POS)、关键性得分(Soc),优化词嵌入维度。所提方法对传统序列映射Seq2Seq和词特征表示进行优化,在增强模型对语义的理解的同时,提高了摘要的质量。实验结果表明,该方法在Rouge评价体系中的表现相比传统伴随自注意力机制的递归神经网络方法(RNN+atten)和多层双向伴随自注意力机制的递归神经网络方法(Bi-MulRNN+atten)提高10~13个百分点,其文本摘要语义理解更加准确、生成效果更好,拥有更好的应用前景。 相似文献
15.
16.
作为一种经典的文本关键字提取和自动生成算法,TextRank将文本看作若干单词组成的集合,并通过对单词节点图的节点权值进行迭代计算,挖掘单词之间的潜在语义关系。在TextRank节点图模型的基础上,将马尔可夫状态转移模型与节点图相结合,提出节点间边权为条件概率的新模型生成算法TextRank_Revised。通过对有标记和无标记的验证集进行验证,证明新的算法在不提升时间复杂度的前提下,通过计算单文本得出的单词排序结果相较于原TextRank算法更加吻合人工对文档的关键字提取结果。 相似文献
17.
针对自然语言处理(NLP)生成式自动摘要领域的语义理解不充分、摘要语句不通顺和摘要准确度不够高的问题,提出了一种新的生成式自动摘要解决方案,包括一种改进的词向量生成技术和一个生成式自动摘要模型。改进的词向量生成技术以Skip-Gram方法生成的词向量为基础,结合摘要的特点,引入词性、词频和逆文本频率三个词特征,有效地提高了词语的理解;而提出的Bi-MulRnn+生成式自动摘要模型以序列映射(seq2seq)与自编码器结构为基础,引入注意力机制、门控循环单元(GRU)结构、双向循环神经网络(BiRnn)、多层循环神经网络(MultiRnn)和集束搜索,提高了生成式摘要准确性与语句流畅度。基于大规模中文短文本摘要(LCSTS)数据集的实验结果表明,该方案能够有效地解决短文本生成式摘要问题,并在Rouge标准评价体系中表现良好,提高了摘要准确性与语句流畅度。 相似文献
18.
传统自动文摘一般对字数没有明确限制,运用传统技术进行短文摘提取时,受字数限制,难以获取均衡的性能。针对该问题,提出一种多重映射的自动短文摘方法。通过计算关联度映射值、长度映射值、标题映射值和位置映射值,分别形成多个候选文摘句子集;再运用多重映射策略,将多个候选子集映射到文摘句子集中,同时使用提取文本中心句的方法提高召回率。实验表明,多重映射可在短文摘提取上获得稳定的性能。在NLP&CC2015评测中,该方法的ROUGE-1测试F值达到0.49,ROUGE-2测试F值达到0.35,均优于评测的平均水平,表明了该方法的有效性。 相似文献