首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
基于粗糙集的改进K-Modes聚类算法   总被引:3,自引:0,他引:3  
传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性.基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进.与其他改进K-Modes算法进行了比较,实验结果表明,基于粗糙集的改进K-Modes算法有效地提高了聚类精度.  相似文献   

3.
于佐军  秦欢 《控制与决策》2018,33(1):181-185
针对标准人工蜂群算法搜索效率低、收敛速度慢等缺点提出一种改进的人工蜂群算法.通过引入算术交叉操作以及利用最优解指导搜索方向,增加算法收敛的速度.在7个基准函数上的测试结果表明了算法的有效性.在此基础上,针对K-means算法的缺点提出基于改进蜂群算法的K-means算法,并加入自动获得最佳聚类数的功能.在人工数据集和UCI真实数据集上的测试验证了所提出算法的性能.  相似文献   

4.
K-Means算法,也称为K-均值,是数据挖掘研究中是一种最基本的算法,也是应用最广泛的聚类算法。在电子商务、入侵检测、CRM等领域有较多的应用实例。它是一种cluster analysis的算法,其实现主要通过不断循环迭代地选取离种子点最近均值的过程。本文结合企业实际应用阐述k-means的实现过程、具体的改进思路以及应用价值,聚类模型的建立对企业具有较强的实际意义。  相似文献   

5.
针对传统K-means算法在处理海量数据时,存在计算复杂度高和计算能力不足等问题,提出了SKDk-means (Spark based kd-tree K-means)并行聚类算法.该算法通过引入kd-tree改善初始中心点的选择,克服传统K-means算法因初始点的不确定性,易陷入局部最优解的问题,同时利用kd-tree的最近邻搜索减少K-means在迭代中的距离计算,加快聚类速度,并在Spark平台上实现了该算法的并行化,使其适用于海量数据聚类,最后通过实验验证了算法具有良好的准确率和并行计算性能.  相似文献   

6.
随着数据量的不断增加,传统的数据处理方法已经无法满足现代大数据处理的需求。近年来,云计算作为一种新型的数据处理方法逐渐被广泛采用。在云计算背景下,K-means聚类算法是一个重要的数据挖掘工具,拥有广泛的应用场景,包括图像处理、文本分析等。但是,当数据量大到一定程度时,传统的K-means聚类算法存在计算效率低和内存占用过大的问题。文章介绍了一种基于云计算的并行K-means聚类算法设计方案,介绍了云计算的概念、云平台技术的应用、云计算平台对并行计算的支持。实验结果表明,K-means算法在处理大规模数据集时的运行时间较长,而采用云计算平台进行并行化计算可以有效提高算法的运行效率。  相似文献   

7.
孙秀娟  刘希玉 《计算机应用》2008,28(12):3244-3247
在K-means算法中,聚类数k是影响聚类质量的关键因素之一。目前,已经提出了许多确定最佳k值的聚类有效性方法,但这些方法都不能很好地处理两种数据集:类(簇)密度不同的数据集和类间距比较小的数据集(含有合并簇的数据集)。为此,提出了一种新的聚类有效性函数,该函数定义为数据特征轴总长度的平方与最小类间距的比值,最佳聚类数为这个比值达到最小时对应的k值。同时,为减小K-means算法对噪声和孤立点数据的敏感性,使用了基于加权的改进K-平均的方法计算类中心。实验证明,与其他算法相比,基于新聚类有效性函数的K-wmeans算法不仅降低了噪声和孤立点数据对聚类结果的影响,而且能有效地处理上面提到的两种数据集,明显提高了数据聚类质量。  相似文献   

8.
K-means算法以其简单性和快速性在文本聚类中得到广泛应用,但是传统的K-means算法对初值的依赖性很强,需要事先给出要生成的簇的数目k,而这个参数k的确定一般是根据用户的经验知识给出的;另外,其初始聚类中心是随机选取的,这种随机性往往导致聚类结果的不德定.可以说,不同的k值和不同的初始聚类中心对聚类质量和时间效率...  相似文献   

9.
K-means聚类算法简单高效,应用广泛。针对传统K-means算法初始聚类中心点的选择随机性导致算法易陷入局部最优以及K值需要人工确定的问题,为了得到最合适的初始聚类中心,提出一种基于距离和样本权重改进的K-means算法。该聚类算法采用维度加权的欧氏距离来度量样本点之间的远近,计算出所有样本的密度和权重后,令密度最大的点作为第一个初始聚类中心,并剔除该簇内所有样本,然后依次根据上一个聚类中心和数据集中剩下样本点的权重并通过引入的参数[τi]找出下一个初始聚类中心,不断重复此过程直至数据集为空,最后自动得到[k]个初始聚类中心。在UCI数据集上进行测试,对比经典K-means算法、WK-means算法、ZK-means算法和DCK-means算法,基于距离和权重改进的K-means算法的聚类效果更好。  相似文献   

10.
王巧玲  乔非  蒋友好 《计算机应用》2019,39(9):2586-2590
针对传统K均值聚类(K-means)算法随机选择初始中心及K值导致的聚类结果不确定且精度不高问题,提出了一种基于聚合距离的改进K-means算法。首先,基于聚合距离参数筛选出优质的初始聚类中心,并将其作用于K-means算法。然后,引入戴维森堡丁指数(DBI)作为算法的准则函数,循环更新聚类直到准则函数收敛,最后完成聚类。改进算法提供了优质的初始聚类中心及K值,避免了聚类结果的随机性。二维数值型仿真数据的聚类结果表明,改进算法在数据样本数达到10000时仍能保持较好的聚类效果。针对Iris和Seg这两个UCI标准数据集的调整兰德系数,改进算法比传统算法性能分别提高了83.7%和71.0%,最终验证了改进算法比传统算法聚类结果的准确性更高。  相似文献   

11.
王治和  王淑艳  杜辉 《计算机工程》2021,47(5):88-96,103
模糊C均值(FCM)聚类算法无法识别非凸数据,算法中基于欧式距离的相似性度量只考虑数据点之间的局部一致性特征而忽略了全局一致性特征。提出一种利用密度敏感距离度量创建相似度矩阵的FCM算法。通过近邻传播算法获取粗类数作为最佳聚类数的搜索范围上限,以解决FCM算法聚类数目需要人为预先设定和随机选定初始聚类中心造成聚类结果不稳定的问题。在此基础上,改进最大最小距离算法,得到具有代表性的样本点作为初始聚类中心,并结合轮廓系数自动确定最佳聚类数。基于UCI数据集和人工数据集的实验结果表明,相比经典FCM、K-means和CFSFDP算法,该算法不仅具有识别复杂非凸数据的能力,而且能够在保证聚类性能和稳定性的前提下加快收敛速度。  相似文献   

12.
时间序列的相似性度量是时间序列分析的基础工作之一,是进行相似匹配的关键。针对欧几里德距离描述分段趋势的不足和各种模式距离对应分段之间距离值的离散化问题,提出一种基于形态相似距离的时间序列相似性度量方法,标准数据集上完成的识别和聚类实验表明了该方法的可行性和有效性。  相似文献   

13.
针对短消息文本聚类,设计基于频繁词集和Ant-Tree的混合聚类方法。该算法利用基于频繁词集聚类算法处理文本数据的效率优势,生成初始聚簇,计算轮廓系数消除重叠文档,在此基础上再通过Ant-Tree算法继续精化,最终得到高质量的结果输出。而且聚类结果保留了描述信息和树状层级结构,提供了更广阔的应用。  相似文献   

14.
提出了一种改进的基于对称点距离的蚂蚁聚类算法。该算法不再采用Euclidean距离来计算类内对象的相似性,而是使用新的对称点距离来计算相似性,在处理带有对称性质的数据集时,可以有效地识别给定数据集的聚类数目和合适的划分。在该算法中,用人工蚂蚁代表数据对象,根据算法给定的聚类规则来寻找最合适的聚类划分。最后用本算法与标准的蚂蚁聚类算法分别对不同的数据集进行了聚类实验。实验结果证实了算法的有效性。  相似文献   

15.
最大距离法选取初始簇中心的K-means文本聚类算法的研究   总被引:1,自引:0,他引:1  
由于初始簇中心的随机选择, K-means算法在聚类时容易出现聚类结果局部最优、聚类结果不稳定、总迭代次数较多等问题。为了解决K-means算法所存在的以上问题, 提出了最大距离法选取初始簇中心的K-means文本聚类算法。该算法基于这样的事实:距离最远的样本点最不可能分到同一个簇中。为使该算法能应用于文本聚类, 构造了一种将文本相似度转换为文本距离的方法, 同时也重新构造了迭代中的簇中心计算公式和测度函数。在实例验证中, 对分属于五个类别的1 500篇文本组成的文本集进行了文本聚类分析, 其结果表明, 与原始的K-means聚类算法以及其他的两种改进的K-means聚类算法相比, 新提出的文本聚类算法在降低了聚类总耗时的同时, F度量值也有了明显提高。  相似文献   

16.
随着数据维度的增加,传统聚类算法会出现聚类性能差的现象.SubKMeans是一种功能强大的子空间聚类算法,旨在为K-Means类算法搜索出一个最佳子空间,降低高维度影响,但是该算法需要用户事先指定聚类数目K值,而在实际使用中有时无法给出准确的K值.针对这一问题,引入成对约束,将成对约束与轮廓系数进行结合,提出了一种基于成对约束的SubKMeans聚类数确定算法.改进后的轮廓系数能够更加准确的评价聚类性能,从而实现K值确定,实验结果证明该方法的有效性.  相似文献   

17.
孙石磊  王超  赵元棣 《计算机应用》2019,39(11):3293-3297
为消除专家经验的主观性、避免依赖轨迹特征并且减轻实验调参的负担,提出一种基于轮廓系数的参数无关聚类分析(PICBASIC)算法。首先,比较了现有基于欧氏距离的航迹配对方法,并且建立基于动态时间弯曲(DWT)距离和高斯核函数的轨迹相似度计算模型;其次,利用谱聚类对空中交通轨迹进行聚类划分;最后,提出一种基于轮廓系数的最佳簇数寻优方法,并且其具有对聚类结果量化评价功能。利用真实进场轨迹进行实验验证,PICBASIC判断将28L跑道的365条轨迹聚为5个簇,28R跑道的530条轨迹聚为6个簇时聚类质量最佳,平均轮廓系数分别为0.8099和0.8056。相同实验数据条件下,PICBASIC与MeanShift聚类的平均轮廓系数差异率分别为-1.23%和0.19%。实验结果表明:PICBASIC包容轨迹的速度和长度差异,全程无需人工指导或实验调参,而且能够筛除异常轨迹对聚类质量的不利影响。  相似文献   

18.
目前常见的轨迹聚类大多基于OPTICS、DBSCAN和K-means等算法,但这些聚类方法的时间复杂度随着轨迹数量的增加会大幅上升。针对该问题,提出一种基于密度核心的轨迹聚类算法。通过引入密度核心的概念,设计轨迹密度计算函数以获取聚类簇的致密核心轨迹,同时利用出租车载客轨迹自身的方向和速度等属性提取轨迹特征点,减少轨迹数据量。在此基础上,根据聚类簇中致密核心轨迹与参与聚类轨迹的相似度距离判断轨迹的匹配程度,进而聚合相似轨迹,并将聚类结果储存在聚类节点中。实验结果表明,与TRACLUS和OPTICS聚类算法相比,该算法能够得到更准确的聚类效果,并且时间效率更高。  相似文献   

19.
物联网监测点相邻关系判定是实现物联网监测异常数据审核时需要解决的一个重要问题。为了克服传统的基于行政区域或地理位置直接指定相邻关系存在的不足,采用聚类分析方法,用轮廓系数作为确定簇数和选择算法的依据,实现了一种基于历史监测数据的物联网监测点逻辑相邻关系判定方法。使用实际监测数据对该方法进行了验证,实验结果表明,所得到的相邻关系符合监测数据的实际关系,能够为物联网监测数据有效性审核提供更加科学合理的处理依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号