首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
研究掌纹准确识别问题,由于光照强度、位置移动、采集设备等影响,采集掌纹图像的分辨率较低。单一掌纹特征提取方法难以全面描述掌纹信息,导致掌纹识别率低。为了提高了掌纹识别率,提出一种基于Gabor滤波和LBP算法相融合的掌纹识别方法。首先对采集掌纹进行预处理,然后分别采用Gabor滤波和LBP算法进行特征提取,最后采用神经网络建立掌纹识别器。仿真结果表明,相对于单一特征提取算法,融合特征算法不仅提高了掌纹识别率,同时加快掌纹识别速度,能够很好满足实时掌纹识别系统的要求。  相似文献   

2.
综合4种传统算法和八元数BP神经网络,提出一种掌纹特征提取算法,自动提取彩色掌纹图像的掌纹线。对掌纹线图像进行二维小波分解,并构造七维特征向量,采用八元数矢量积表示算法进行掌纹识别。实验结果表明,掌纹提取算法能提取出较精细的掌纹线,识别算法的成功率可达96%。  相似文献   

3.
掌纹识别算法综述   总被引:26,自引:3,他引:26  
掌纹识别作为一种新兴的生物识别技术, 近年来得到了广泛的关注与研究. 与其他生物特征相比, 掌纹有许多独特的优势,包括识别率高、采集设备价格低廉、用户可接受性好等. 这些优势使得掌纹识别成为一种有着广泛应用前景的生物识别方法. 本文首先介绍了掌纹的特点、掌纹的采集设备和预处理方法, 之后详细介绍了近几年来提出的各种掌纹识别方法. 根据特征提取以及匹配方法的不同, 本文将掌纹识别方法分为基于结构的、基于子空间的、基于编码的和基于统计的四类方法. 在回顾和比较了各种算法的特点之后, 对未来的掌纹识别方法的发展方向作了展望.  相似文献   

4.
基于ICA的在线掌纹识别   总被引:1,自引:0,他引:1  
个人身份认证和鉴别在现在社会显示着重要的作用,作为一种准确而可靠的个人鉴定方式,生物识别已经引起了广泛的注意.掌纹作为一种相对较新的生物识别技术也有着独特的优点.而掌纹特征的提取和选择是整个识别中最关键的一个环节,主要利用ICA(独立主成分分析)方法对掌纹进行特征提取,实验证明,相比较PCA(主成分分析)方法,基于ICA方法具有更高的识别效率.  相似文献   

5.
《软件工程师》2019,(10):7-11
随着社会的发展,身份信息的安全问题日益凸显。为解决用户身份识别过程中受环境影响较大,以及掌纹识别时提取掌纹特征复杂的问题,本文进行了"基于卷积神经网络(CNN)的掌纹识别"的研究。运用该算法的优势在于简化了掌纹识别的前期预处理,可以直接将采集的原始图像进行输入,然后识别。通过卷积操作和最大池化操作,减少了训练参数量,大大节约了时间。最后使用Softmax分类器对结果进行分类。实验结果显示,该方法对不同人的掌纹有较高的识别率,克服了传统掌纹识别精度差,识别时间长,人工提取特征困难的缺点。  相似文献   

6.
首先利用小波变换增强掌纹、人脸图像;然后利用一种新的子空间分析方法——对角离散余弦变换和二维主元判别分析(Diagonal,Discrete Cosine Transform and Two-Dimensional Principle Component Analysis,Dia-DCT+2DPCA)相结合的算法提出了一种掌纹、人脸特征融合的识别方法;最后运用最小距离分类器进行识别。实验结果表明,该文提出的掌纹、人脸特征融合方法实现了特征层融合,有效地提高了身份识别的正确识别率。  相似文献   

7.
基于Gabor局部相对特征的掌纹识别   总被引:1,自引:0,他引:1  
Gabor变换是掌纹识别中提取纹理特征的一个重要工具,但其性能易受图像的变化以及不均衡噪声等因素影响,因此提出了一种基于Gabor局部相对特征的掌纹识别算法。该算法对原始图像进行微尺度不变Gabor滤波;结合分形学的思想,将滤波后的图像分成大小相等的子域,每个子域又分成多个相同的子块,计算每个子块与它所在子域的相对方差,将所有子块的相对方差排列组成表征图像的特征向量进行识别。该算法将微尺度不变与局部相对特性统一,所提取的特征对各种变化有很强的鲁棒性,提高了识别精度和效率。实验使用北京交通大学BJTU_PalmprintDB证明该算法的有效性。  相似文献   

8.
基于主线特征的双向匹配的掌纹识别新方法   总被引:20,自引:0,他引:20  
掌纹识别是利用人的手掌掌纹图像对其身份进行认证的一种生物特征识别技术,目前的掌纹研究主要集中在掌纹特征线的提取算法上,而对特征线的筛选和匹配的问题讨论较少,掌纹上的纹线比较复杂,深浅粗细长短不一,实施任何一种边缘提取算法都要考虑纹线的取舍问题,首先介绍了提出的应用最大内切圆对掌纹有效区域进行分割和对准的方法,较好地解决了掌纹的定位问题,然后提出了掌纹特征线族的概念,用以刻画掌纹上的主要特征,从而将掌纹纹线特征分为主要特征和次要特征.通过对主要特征与全部特征的双向匹配,给出最终的识别结果,将该方法与之前提出的基于傅里叶变换的方法在自行研制的掌纹采样设备所采集的掌纹库(90人450幅)上进行了比较实验,实验结果证明新方法可以处理原方法无法定位的掌纹图像,同时识别率也有明显提高。  相似文献   

9.
目的 掌纹识别技术作为一种新兴的生物特征识别技术越来越受到广泛重视。深度学习是近10年来人工智能领域取得的重要突破。但是,基于深度学习的掌纹识别相关研究还比较初步,尤其缺乏深入的分析和讨论,且已有的工作使用的都是比较简单的神经网络模型。为此,本文使用多种卷积神经网络对掌纹识别进行性能评估。方法 选取比较典型的8种卷积神经网络模型,在5个掌纹数据库上针对不同网络模型、学习率、网络层数、训练数据量等进行性能评估,展开实验,并与经典的传统掌纹识别方法进行比较。结果 在不同卷积神经网络识别性能评估方面,ResNet和DenseNet超越了其他网络,并在PolyU M_B库上实现了100%的识别率。针对不同学习率、网络层数、训练数据量的实验发现,5×10-5为比较合适的识别率;网络层数并非越深越好,VGG-16与VGG-19的识别率相当,ResNet层数由18层逐渐增加到50层,识别率则逐渐降低;参与网络训练的数据量总体来说越多越好。对比传统的非深度学习方法,卷积神经网络在识别效果方面还存在一定差距。结论 实验结果表明,对于掌纹识别,卷积神经网络也能获得较好的识别效果,但由于训练数据量不充分等原因,与传统算法的识别性能还有差距。基于卷积神经网络的掌纹识别研究还需要进一步深入开展。  相似文献   

10.
11.
当前车牌识别的研究大都是针对正常环境进行的,对于复杂环境下的车牌难以达到识别要求。本文提出一种用BP神经网络构造并行神经网络的车牌字母和数字识别方法,利用PVM网络在虚拟并行平台上实现了并行神经网络,最后对复杂现场环境下获取的车牌进行了实验。实验结果证明,该算法具有良好的性能,能在28ms内实时准确的识别车牌字母和数字。  相似文献   

12.
扑克牌识别软件包的开发及应用   总被引:4,自引:0,他引:4  
该文介绍了基于模式识别原理开发的扑克牌识别软件包及其程序实现,在识别中运用了BP神经网络和相关检测两种方法,取得了较好的识别效果,最后通过两个具体扑克牌的识别dermo简单给出了该扑克牌识别软件包的应用。  相似文献   

13.
针对BP神经网络在高维数据分类中存在训练时间长的缺点,提出一种新的多神经网络分类模型,该模型采用自组织特征映射(SOFM)网络对训练样本集进行无监督聚类,通过优化竞争层神经元权值,并以此训练BP神经网络实现数据分类.最后对自由手写数字样本进行识别,仿真实验表明,这一模型具有较强的分类能力和泛化能力.  相似文献   

14.
该文提出了一种采用BP神经网络方法来对无限制手写体字母、数字进行识别的方案。在选取合适的特征点的基础上,对手写体图像进行分域处理,每一小区域对应输入层的一个神经元。测试结果表明,该识别方案具有很强的抗畸变、抗旋转能力。  相似文献   

15.
模式识别技术在各行各业都有广泛的应用。在工业检测、医疗仪器的样本检查分析、军事卫星侦察、人工智能方面有着举足轻重的作用。该文介绍基于BP神经网络的模式识别方法。运用一种基于BP神经网络的改进算法,将基于学习的思想引入到模式识别中,对样本数据进行学习和训练,形成良好的网络,最后对与已训练好的网络进行检验的整个过程,由于达到了一定的准确度,避开了传统方法计算属性权重的问题。  相似文献   

16.
神经网络是信息科学、脑科学、神经心理学等诸多学科近年来共同关注的研究热点.由于神经网络具有良好的抽象分类特性,使其成为解决图像识别相关问题的有效工具.在简述图像识别过程的基础上重点讨论利用BP神经网络对图像进行识别,用Matlab完成对神经网络的训练和测试,获得满意的结果.  相似文献   

17.
基于改进的BP神经网络车牌识别的研究   总被引:1,自引:0,他引:1  
近年来,城市智能交通系统发展的很快,车牌识别系统作为城市智能交通系统中信息采集的一种重要手段,也引起越来越多关注.本文对车牌识别的形态进行深入研究,应用了改进的BP神经网络算法.实验结果显示这个方法可以更高效的识别车牌并且建立一个良好的未来车牌识别技术的基础.  相似文献   

18.
一种基于BP神经网络的车牌字符识别算法   总被引:1,自引:0,他引:1  
车牌识别系统是智能交通中的一个重要分支,本文针对传统的模板匹配算法存在识别准确率低的问题,提出了一种基于神经网络的车牌字符识别算法。该方法对分割、归一化后的字符进行特征提取获取其特征向量,把这个特征向量送到BP网络中进行训练,可以得到训练好的权值,以此权值对车牌字符进行识别。实验表明,本算法对车牌图像的识别率达90%以上。  相似文献   

19.
提出了一种融合局部二值模式(Local Binary Pattern,LBP)和BP神经网络的人脸表情识别方法。通过把人脸表情图像划分成若干区域,分别提取人脸子区域的LBP特征,然后把各个区域的LBP特征串联成一个完整的特征向量,该特征向量就可以表征该表情图像。构造BP神经网络人脸表情识别模型,通过在Cohn-Kanade人脸表情库的实验,验证了该方法的鲁棒性性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号