首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
张泽林  徐军 《计算机应用》2005,40(10):2910-2916
乳腺病理组织图像中上皮和间质区域的自动分割对乳腺癌的诊断和治疗具有非常重要的临床意义。但是由于乳腺组织病理图像中上皮和间质区域具有高度复杂性,因此一般的分割模型很难只根据提供的分割标记来有效地训练,并对两种区域进行快速、准确的分割。为此,提出一种基于条件对抗网络(cGAN)的上皮和间质分割条件对抗网络(EPScGAN)模型。在EPScGAN中,判别器的判别机制为生成器的训练提供了一个可训练的损失函数,来更加准确地衡量出生成器网络的分割结果输出和真实标记之间的误差,从而更好地指导生成器的训练。从荷兰癌症研究所(NKI)和温哥华综合医院(VGH)两个机构提供的专家标记的乳腺病理图像数据集中随机裁剪出1 286张尺寸为512×512的图像作为实验数据集,然后将该数据集按照7:3的比例划分为训练集和测试集对EPScGAN模型进行训练和测试。结果表明,EPScGAN模型在测试集的平均交并比(mIoU)为78.12%,和其他6种流行的深度学习分割模型相比较,提出的EPScGAN具有更好的分割性能。  相似文献   

2.
骆小飞  徐军  陈佳梅 《自动化学报》2017,43(11):2003-2013
上皮和间质组织是乳腺组织病理图像中最基本的两种组织,约80%的乳腺肿瘤起源于乳腺上皮组织.为了构建基于乳腺组织病理图像分析的计算机辅助诊断系统和分析肿瘤微环境,上皮和间质组织的自动分割是重要的前提条件.本文构建一种基于逐像素点深度卷积网络(CN-PI)模型的上皮和间质组织的自动分割方法.1)以病理医生标注的两类区域边界附近具有类信息为标签的像素点为中心,构建包含该像素点上下文信息的正方形图像块的训练集.2)以每个正方形图像块包含的像素的彩色灰度值作为特征,以这些图像块中心像素类信息为标签训练CN模型.在测试阶段,在待分割的组织病理图像上逐像素点地取包含每个中心像素点上下文信息的正方形图像块,并输入到预先训练好的CN网络模型,以预测该图像块中心像素点的类信息.3)以每个图像块中心像素为基础,逐像素地遍历图像中的每一个像素,将预测结果作为该图像块中心像素点类信息的预测标签,实现对整幅图像的逐像素分割.实验表明,本文提出的CN-PI模型的性能比基于图像块分割的CN网络(CN-PA)模型表现出了更优越的性能.  相似文献   

3.
蒋芸  谭宁  张海  彭婷婷 《计算机工程》2019,45(4):223-227
现有基于U型网络(U-Net)的咬翼片图像分割方法将咬翼片X射线图像分割成龋齿、牙釉质、牙本质、牙髓、牙冠、修复体和牙根管7个部分,但分割准确率偏低。为此,提出一种改进的咬翼片图像分割方法,将条件生成对抗网络与U-Net相结合对咬翼片进行分割,使判别器与生成器相互优化,获得具有更多上下文信息的分割特征图。实验结果表明,改进方法的Dice系数相比U-Net方法提升了0.133,分割准确率更高。  相似文献   

4.
基于条件生成对抗网络的书法字笔画分割   总被引:1,自引:0,他引:1  
张巍  张筱  万永菁 《自动化学报》2022,48(7):1861-1868
毛笔书法作为中华传统艺术的精华, 需要在新的时代背景下继续传承和发扬. 书法字是以笔画为基本单元组成的复杂图形, 如果要分析书法结构, 笔画分割是首要的步骤. 传统的笔画分割方法主要利用细化法从汉字骨架上提取特征点, 分析交叉区域的子笔画拓扑结构关系来分割笔画. 本文分析了传统笔画分割基于底层特征拆分笔画的局限性, 利用条件生成对抗网络(Conditional generative adversarial network, CGAN)的对抗学习机制直接分割笔画, 使提取笔画从先细化再分割改进为直接分割. 该方法能有效提取出精确的笔画, 得到的高层语义特征和保留完整信息的单个笔画利于后续对书法轮廓和结构的评价.  相似文献   

5.
医学图像在重建过程中总会受到噪声干扰,对于此问题,本文提出了 一种基于条件生成对抗网络(CGAN)的去噪方法,算法以完整图像作为网络的输入及输出,使生成的图像信息更加稳定可靠.为了适应CT图像的特点,本文对CGAN结构进行了改进,使其能够适应不同噪声水平下的加性高斯白噪声,为了提高效率,在判别器进行训练时采用了损失判别...  相似文献   

6.
基于条件Wassertein生成对抗网络的图像生成   总被引:1,自引:0,他引:1  
生成对抗网络(GAN)能够自动生成目标图像,对相似地块的建筑物排布生成具有重要意义.而目前训练模型的过程中存在生成图像精度不高、模式崩溃、模型训练效率太低的问题.针对这些问题,提出了一种面向图像生成的条件Wassertein生成对抗网络(C-WGAN)模型.首先,该模型需要识别真实样本和目标样本之间特征对应关系,然后,...  相似文献   

7.
随着多媒体技术的发展,诸如黑白照片着色、医学影像渲染和手绘图上色等各种图像着色应用需求逐渐增多.传统着色算法大部分存在着色模式单一、在处理部分数据时着色效果不佳或者依赖人工输入信息等缺点,对此,设计了一种条件生成对抗网络和颜色分布预测模型相结合的图像着色方法.由生成对抗网络生成着色图像,并通过预测模型的预测值来对生成器...  相似文献   

8.
沈鳌  王晓东  姚宇 《计算机应用》2022,(S2):237-242
针对前列腺临床靶区的对比度不均、边缘模糊、形态大小不一等问题,提出了一种基于Transformer和生成对抗网络的前列腺临床靶区分割方法(TG-UNet)。首先借助多头注意力机制有效地提取全局及局部信息,将分割结果输入到生成对抗网络,然后判别网络判断输入是分割预测结果还是真实标签,最后分割网络利用判别结果优化调整自身参数以获得更贴近真实标签的分割结果。通过多组对比实验可知,与U-Net相比,该网络在Dice系数、平均交并比(mIOU)、平均像素准确度(mPA)等指标上分别提升了9.98个百分点、12.41个百分点、0.68个百分点。实验结果表明,所提方法能够提取更多前列腺临床靶区细节,且具有较强的泛化能力。  相似文献   

9.
针对由于光在水中传播所带来的影响,导致所获得的水下图像不清晰以及颜色失真的问题,提出了一种基于条件生成对抗网络(CGAN)的水下图像增强算法.为了达到更好的增强效果,利用完全配对的水下图像与清晰图像进行模型的训练,通过端到端的方式获取增强图像.在生成网络模型中,采用U-Net网络结构进行网络的信息减负,同时为了捕捉到更...  相似文献   

10.
人工智能目前在诸多领域均得到较好应用,然而通过对抗样本会使神经网络模型输出错误的分类.研究提升神经网络模型鲁棒性的同时如何兼顾算法运行效率,对于深度学习在现实中的落地使用意义重大.针对上述问题,本文提出一种基于条件对抗生成网络的对抗样本防御方法Defense-CGAN.首先使用对抗生成网络生成器根据输入噪声与标签信息生...  相似文献   

11.
针对基于深度学习的图像标注模型输出层神经元数目与标注词汇量成正比,导致模型结构因词汇量的变化而改变的问题,提出了结合生成式对抗网络(GAN)和Word2vec的新标注模型。首先,通过Word2vec将标注词汇映射为固定的多维词向量;其次,利用GAN构建神经网络模型--GAN-W模型,使输出层神经元数目与多维词向量维数相等,与词汇量不再相关;最后,通过对模型多次输出结果的排序来确定最终标注。GAN-W模型分别在Corel 5K和IAPRTC-12图像标注数据集上进行实验,在Corel 5K数据集上,GAN-W模型准确率、召回率和F1值比卷积神经网络回归(CNN-R)方法分别提高5、14和9个百分点;在IAPRTC-12数据集上,GAN-W模型准确率、召回率和F1值比两场K最邻近(2PKNN)模型分别提高2、6和3个百分点。实验结果表明,GAN-W模型可以解决输出神经元数目随词汇量改变的问题,同时每幅图像标注的标签数目自适应,使得该模型标注结果更加符合实际标注情形。  相似文献   

12.
朱利安  张鸿 《计算机应用》2023,43(2):567-574
雾天拍摄的图片存在颜色失真、细节模糊等问题,会对图片的质量造成一定影响。许多基于深度学习的方法虽然在去除合成的均匀雾霾图片上具有很好的效果,但在最新的NTIRE挑战赛中引入的真实非均匀去雾数据集上效果较差。主要原因是非均匀雾霾的分布较复杂,纹理细节在去雾过程中很容易丢失,并且该数据集的样本数量有限,容易产生过拟合。因此提出了一种双分支生成器的条件生成对抗网络(DB-CGAN)。其中,一条分支以U-net为基础架构,通过“加强-整合-减去”的策略在解码器中加入增强模块,从而增强解码器中特征的恢复,并使用密集特征融合为非相邻层级建立足够的连接。另一分支使用多层残差的结构来加快网络的训练,并串联大量的通道注意力模块,以最大限度地提取更多的高频细节特征。最后,使用一个简单有效的融合子网来融合两个分支。在实验中,所提模型在评价指标峰值信噪比(PSNR)和结构相似性(SSIM)上明显优于先前的暗通道先验(DCP)、一体化去雾网络(AODNet)、门控上下文聚合网络(GCANet)、多尺度增强去雾网络(MSBDN)去雾模型。实验结果表明,所提出的网络能够在非均匀去雾数据集上具有更好的性能。  相似文献   

13.
赵扬  李波 《计算机应用》2021,41(12):3686-3691
大气中烟雾等粒子的存在会导致肉眼捕获场景的能见度降低。大多数传统的去雾方法都是预期估计雾霾场景的透射率、大气光,并利用大气散射模型恢复无雾图像。这些方法尽管取得了显著进展,但由于过分依赖苛刻的先验条件,在缺乏相应先验条件下的去雾效果并不理想。因此,提出一种端到端的一体化除雾网络,使用增强生成器的条件生成对抗网络(CGAN)直接恢复无雾图像。生成器端以U-Net作为基础架构,通过“整合-加强-减去”的促进策略,用一个简单有效的增强解码器,增强解码器中特征的恢复。另外,加入了多尺度结构相似性(MS-SSIM)损失函数,增强图像的边缘细节恢复。在合成数据集和真实数据集上的实验中,该模型的峰值信噪比(PSNR)和结构相似性(SSIM)明显优于传统的暗通道先验(DCP)、一体化除雾网络(AOD-Net)、渐进式特征融合网络(PFFNet)、条件Wasserstein生成对抗网络(CWGAN)去雾模型。实验结果表明,相较于对比算法,所提网络能够恢复出更接近于地面真相的无雾图像,除雾效果更优。  相似文献   

14.
张淑萍  吴文  万毅 《计算机应用》2020,40(8):2378-2385
传统的深度学习阴影去除方法常常会改变非阴影区域的像素且无法得到边界过渡自然的阴影去除结果。为了解决该问题,基于生成对抗网络(GAN)提出一种新颖的多阶段阴影去除框架。首先,多任务驱动的生成器分别通过阴影检测子网和蒙版生成子网为输入图像生成相应的阴影掩膜和阴影蒙版;其次,在阴影掩膜和阴影蒙版的引导下,分别设计全影模块和半影模块,分阶段去除图像中不同类型的阴影;然后,以最小二乘损失为主导构建一种新的组合损失函数以得到更好的结果。与最新的深度学习阴影去除方法相比,在筛选数据集上,所提方法的平衡误差率(BER)减小约4.39%,结构相似性(SSIM)提高约0.44%,像素均方根误差(RMSE)减小约13.32%。实验结果表明该方法得到的阴影去除结果边界过渡更加平滑。  相似文献   

15.
在深度学习中,随着卷积神经网络(CNN)的深度不断增加,进行神经网络训练所需的数据会越来越多,但基因结构变异在大规模基因数据中属于小样本事件,导致变异基因的图像数据十分匮乏,严重影响了CNN的训练效果,造成了基因结构变异检测精度差、假阳性率高等问题.为增加基因结构变异样本数量,提高CNN识别基因结构变异的精度,提出了一...  相似文献   

16.
针对深度卷积生成对抗网络(DCGAN)中的对抗训练缺乏灵活性以及DCGAN所使用的二分类交叉熵损失(BCE loss)函数存在优化不灵活、收敛状态不明确的问题,提出了一种基于仲裁机制的生成对抗网络(GAN)改进算法,即在DCGAN的基础上引入了所提出的仲裁机制。首先,所提改进算法的网络结构由生成器、鉴别器和仲裁器组成;然后,生成器与鉴别器会根据训练规划进行对抗训练,并根据从数据集中感知学习到的特征分别强化生成图像以及辨别图像真伪的能力;其次,由上一轮经过对抗训练的生成器和鉴别器与度量分数计算模块一起组成仲裁器,该仲裁器将度量生成器与鉴别器对抗训练的结果,并反馈到训练规划中;最后,在网络结构中添加获胜限制以提高模型训练的稳定性,并使用Circle loss函数替换BCE loss函数,使得模型优化过程更灵活、收敛状态更明确。实验结果表明,所提算法在建筑类以及人脸数据集上有较好的生成效果,在LSUN数据集上,该算法的FID指标相较于DCGAN原始算法下降了1.04%;在CelebA数据集上,该算法的IS指标相较于DCGAN原始算法提高了4.53%。所提算法生成的图像具有更好的多样性以及更高的质量。  相似文献   

17.
针对传统的基于地物纹理和空间特征的方法很难精确识别地面新增建筑的问题,提出了一种基于生成对抗网络的新增建筑变化检测模型(CDGAN)。首先,使用Focal损失函数改进传统图像分割网络(U-net),并以此作为模型的生成器(G),用于生成遥感影像的分割结果;然后,设计了一个16层的卷积神经网络(VGG-net)作为鉴别器(D),用于区分生成的结果和人工标注(GT)的真实结果;最后,对生成器和判别器进行对抗训练,从而得到具有分割能力的生成器。实验结果表明,CDGAN模型的检测准确率达到92%,比传统U-net模型的平均区域重合度(IU)提升了3.7个百分点,有效地提升了遥感影像中地面新增建筑物的检测精度。  相似文献   

18.
程凯  王妍  刘剑飞 《计算机应用》2005,40(10):2917-2922
为了减少对标注图像数量的依赖,提出一种新颖的半监督学习方法用于细胞核的自动分割。首先,通过新的卷积神经网络(CNN)从背景中自动提取细胞区域。其次,判别器网络通过应用全卷积网络来为输入的图像生成置信图;同时耦合对抗性损失和标准交叉熵损失,以改善分割网络的性能。最后,将标记图像和无标记图像与置信图结合来训练分割网络,使分割网络可以在提取的细胞区域中识别单个细胞核。对84张图像(训练集中的1/8图像带标注,其余图像无标注)的实验结果表明,提出的细胞核分割方法的分割准确率度量(SEG)得分可以达到77.9%,F1得分可以达到76.0%,这比该方法使用670张图像且训练集中的所有图像都带标注时的表现要好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号