共查询到16条相似文献,搜索用时 62 毫秒
1.
李子沁 《电脑编程技巧与维护》2018,(2):120-121,136
利用现有的轨迹数据进行城市规划已逐渐成为一个值得研究的课题.针对电信公司提供的数据,提出了将轨迹分段聚类的算法.该算法首先将轨迹划分为一系列轨迹段,然后将相似的轨迹段聚到一个类中.在分段这部分使用最小描述长度(MDL)原则,在聚类阶段采用高斯混合模型(GMM).证明了该算法利用上海电信数据可以很好地聚类,直观地展示出行人的活动方式对城市规划起到重要意义. 相似文献
2.
公共安全异常检测的需求越来越迫切,监控中基于轨迹聚类的检测方法越来越流行,但是现有方法在处理高维不等长轨迹数据时效果并不理想。提出一个新的轨迹聚类方法,该方法通过组合动态时间弯曲和密度峰算法实现。动态时间弯曲用于度量轨迹间的距离,密度峰算法根据距离进行聚类。前者可直接度量不等长轨迹聚类,后者是近年提出的非球体分布数据聚类算法,以局部密度和最近邻聚类组合实现。实验在PETS2006监控视频数据集上进行,测试结果表明该方法有效地发现了异常的轨迹行为模式。 相似文献
3.
4.
对较大数据集挖掘序列模式时,可能会因产生的大量候选集等原因无法装入内存而难以进行.文中提出基于分区的序列模式挖掘算法.以期克服有限存储问题,为并行处理及分布式处理做好基础.此外,当给出的分区数固定时,不同的分区性能可能存在较大差异,通过聚类方法对数据集预处理,以得到可以产生较少局部频繁宁列的特定分区,最终得到较少的全局候选序列以减少第二遍扫描时间.理论分析和实验表明,所提出的方法可比普通分区方法得到更加优化的分区,从而效率更高. 相似文献
6.
基于密度的聚类算法(DBSCAN)是最有效的轨迹数据挖掘方法之一,但基于密度的聚类算法往往受到输入参数选择的限制。在轨迹数据挖掘中,聚类结果不仅受到类内距离和类间距离的影响,还受到聚类中坐标点个数的影响。因此,提出了一种新的基于内外占空比的集群有效性指标来平衡这三个因素,该指标可以自动选择密度聚类的输入参数,并在不同的数据集上形成有效的聚类,优化后的聚类方法可应用于出行者行为轨迹的深度分析和挖掘。实验结果证明,与传统的有效性指标相比,提出的基于占空比的评价指标能够优化输入参数,获得较好的出行者位置信息聚类结果。 相似文献
7.
目前的轨迹数据聚类直接对整条轨迹数据聚类,或先分段再对轨迹段聚类。分段聚类法抛弃轨迹段内部点,丢失轨迹局部特征,没有考虑点的速度影响。针对该问题,提出一种基于速度约束的分段轨迹数据聚类方法。该方法将速度约束和two-pass corner detection应用于轨迹分段,在邻域计算中加入速度约束,采用Discrete Fréchet Distance比较轨迹段距离,保留了轨迹段内部特征。用类似DBSCAN的TraDBSCAN算法对轨迹段进行聚类。实验结果表明,该方法考虑速度因素,可以获得更有效的聚类结果。 相似文献
8.
统计数据轨迹一般具有重视变化趋势、数据噪声较大、模式分布不同等特点, 直接使用传统的聚类分析方法难有很好的效果。对此在K-means算法的基础上, 分别采用了归一化处理、平滑处理以及关键峰匹配等方法处理上述三个问题, 设计了一种解决系统使用轨迹模式分析问题的改进聚类方法。通过使用仿真数据与实际数据进行测试分析, 在仿真数据上改进算法显著降低了聚类的错误率。在实际数据上, 改进算法得出的聚类结果优于K-means算法, 由此证明了改进方法比传统K-means聚类算法在该问题上效果更好。 相似文献
9.
基于聚类的出租车异常轨迹检测 总被引:1,自引:0,他引:1
《计算机工程》2017,(2):16-20
出租车全球定位系统数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的异常轨迹模式。将位置和几何形状、行驶时间分别作为出租车轨迹的空间与时间特征,根据特征偏离情况划分时间、空间和时空异常轨迹。从轨迹数据中提取相同起终点的轨迹集,将轨迹划分成轨迹片段,计算轨迹间的相似度并进行基于距离和密度的聚类,在空间特征上初步分离出频繁和稀疏轨迹,根据数据异常判定的kσ准则确定时间特征异常的分离阈值,对时间特征进行再次划分,最终实现出租车异常轨迹检测。实验结果表明,该方法能从异常轨迹中挖掘出个性化路线、异常停留位置和交通路段,为智能交通、物流高效规划和执行等提供参考信息。 相似文献
10.
针对自驾车游客加油轨迹稀疏,还原真实旅游路线困难的问题,提出一种基于语义表示的稀疏轨迹聚类算法,用以挖掘流行的自驾车旅游路线。与基于轨迹点匹配的传统轨迹聚类算法不同,该算法考虑不同轨迹点之间的语义关系,学习轨迹的低维向量表示。首先,利用神经网络语言模型学习加油站点的分布式向量表示;然后,取每条轨迹中所有站点向量的平均值作为该轨迹的向量表示;最后,采用经典的k均值算法对轨迹向量进行聚类。最终的可视化结果表明,所提算法有效地挖掘出了两条流行的自驾车旅游线路。 相似文献
11.
12.
13.
现代畜牧业在实际放牧过程中由定位设备产生海量轨迹数据。为了从牧区日常移动轨迹中挖掘出潜在有用价值,提出一种新的基于速度扰动划分与聚类方法。该方法首先将连续定位轨迹段以速度扰动方式进行划分,设置速度扰动阈值,区分牲畜兴趣点及运动状态,并借助于聚类方法将地理位置上相似轨迹点进行聚类进而检测牲畜运动兴趣点。结合核密度分析法对聚类轨迹点进行强度可视化展示。同时,为满足处理海量轨迹数据算法需求,搭建云计算平台进行数据挖掘。理论与实验表明,本文提出的方法可以有效从海量草原牲畜运动轨迹中发现其不同兴趣区域及强度关系,并对后续相关研究具有指导意义。 相似文献
14.
从系统源码中挖掘设计模式对软件的可理解性和可维护性具有重要意义。基于模糊理论,提出一种模式匹配方法,实现设计模式挖掘。其中,使用基于类关系的素数矩阵模型对设计模式结构及源码信息进行描述,并作为匹配的模型基础;采用聚类方法对源码模型进行优化,提高匹配效率;将模糊方法与设计模式匹配策略相结合,引入静态和动态信息,提高匹配的正确性。实验结果证明此方法在精确性和完整性方面得到了很大的提高,并且避免了对特殊模式的失效性。 相似文献
15.
如何有效的从轨迹数据中挖掘轨迹模式和规律具有重要意义,本文基于交通路网研究移动对象轨迹预测,将序列分析方法和马尔科夫统计模型结合,提出了一种基于后缀自动机的变阶马尔科夫模型挖掘方法。该方法根据移动对象的历史轨迹数据进行学习训练,计算轨迹序列上下文的概率特征,建立序列的后缀自动机模型,结合当前实际轨迹数据,动态自适应预测将来的位置信息。实验结果表明:相比固定阶马尔科夫模型,随着阶数的增加(L>=2),固定阶马尔科夫模型预测的精度逐步降低,而该方法能动态自适应,精度保持在81.3%左右,取得较好的预测效果;同时,该方法只需线性的时间和空间开销,大大降低了存储空间和时间,能实现大规模数据的在线学习。 相似文献
16.
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。 相似文献