共查询到17条相似文献,搜索用时 125 毫秒
1.
针对生物发酵过程中一些生物参量难以测量的问题,提出一种基于改进极限学习机(IELM)的软测量建模方法。该方法通过最小二乘方法和误差反馈原理计算出最优的网络输入到隐含层的学习参数,以提高模型的稳定性和预测精度。通过双对角化方法计算出最优的输出权值,解决输出矩阵的病态问题,进一步提高模型的稳定性。将所提方法应用于红霉素发酵过程生物量浓度的软测量。结果表明,与ELM、PL-ELM、IRLS-ELM软测量建模方法相比,IELM在线软测量建模方法具有更高的预测精度和更强的泛化能力。 相似文献
2.
极限学习机(ELM)因其泛化能力好和学习速度快而成为软测量的新方法,但当应用到铝电解工艺参数建模时,ELM通常需要较多隐层节点并且泛化能力较低。针对这一问题,提出一种基于改进极限学习机(IELM)的软测量模型。首先,利用粗糙集中的约简理论剔除输入变量中的冗余或不相关属性,以降低ELM的输入复杂性;然后,利用偏相关系数对输入变量和输出变量间的相关性进行分析,将输入数据分为正输入和负输入两部分,分别对这两部分建立输入单元,重新构建ELM网络;最后,建立了基于改进极限学习机的铝电解分子比软测量模型。仿真实验结果表明,基于改进极限学习机的软测量模型具有较好的泛化能力和稳定性。 相似文献
3.
4.
针对现代工业控制中非线性、时变等复杂特性,传统的极限学习机(ELM)无法深度挖掘数据信息,导致模型参数影响软测量预测精度.极限学习机中激活函数的速率参数和位移参数以及岭回归中的乘法因子对该建模算法的预测精度有着重要影响.为了提升软测量模型的预测精度,采用混合蛙跳算法(SFLA)精确搜索ELM中的参数最优解.SFLA能够... 相似文献
5.
自适应混沌粒子群算法对极限学习机参数的优化 总被引:1,自引:0,他引:1
针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSO-ELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。 相似文献
6.
混凝土抗压强度是建筑结构设计与评价一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新式仿生算法金枪鱼群算法优化极限学习机(TSO-ELM)的混凝土抗压强度预测方法。该方法通过对ELM隐藏层初始参数中的连接权值与偏置值使用TSO进行寻优,有效提升了ELM的预测准确度。在仿真实验部分,通过两组混凝土数据集对ELM的预测速度、TSO的寻优能力、TSO-ELM模型的泛化性逐一进行验证。结果表明,该方法可以有效提高预测的速度与精准度,迭代次数更少,同时具有良好的泛化性,为现场施工及时进行混凝土抗压强度的预测提供了一种新方法。 相似文献
7.
粒子群优化核极限学习机的变压器故障诊断 总被引:2,自引:0,他引:2
核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K 折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimization,PSO)的KELM分类器参数优化方法,将CV训练所得多个模型的平均准确率作为PSO的适应度评价函数,为KELM的参数优化提供评价标准。将该方法应用于变压器故障诊断中,充分利用数量有限的样本数据,提高KELM的泛化性能。实验结果表明,相比结合网格搜索(grid)的KELM、结合CV和Grid的KELM以及结合PSO的KELM,结合PSO的CV参数优化方法具有更好的性能。 相似文献
8.
在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKELM参数优化,最终得到分类效果较优的DPSO-WKELM分类器。通过采用UCI基因数据进行仿真,将该分类结果与径向基核极限学习机(KELM)、WKELM等算法结果进行比较,得出所提算法具有较高的分类精度。 相似文献
9.
为提高电力变压器故障诊断的准确度,提出一种基于核极限学习机(KELM)的变压器故障诊断方法,利用混沌优化改善粒子群算法的全局寻优性能。该方法首先用KELM建立故障诊断模型,再利用改进后的混沌粒子群算法(CPSO)对KELM的参数进行优化。结合油中溶解气体分析法(DGA)获得样本数据,通过实例仿真结果对比分析表明,所用算法具有更高的诊断准确率,提高了变压器故障诊断的可靠性。 相似文献
10.
《计算机应用与软件》2015,(11)
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。 相似文献
11.
提出一种基于差分进化(DE)和粒子群优化(PSO)的混合智能方法—–DEPSO算法,并通过对10个典型函数进行测试,表明DEPSO算法具有良好的寻优性能。针对单隐层前向神经网络(SLFNs)提出一种改进的学习算法—–DEPSO-ELM算法,即应用DEPSO算法优化SLFNs的隐层节点参数,采用极限学习算法(ELM)求取SLFNs的输出权值。将DEPSO-ELM算法应用于6个典型真实数据集的回归计算,并与DE-ELM、SaE-ELM算法相比,获得了更精确的计算结果。最后,将DEPSO-ELM算法应用于数控机床热误差的建模预测,获得了良好的预测效果。 相似文献
12.
13.
孙兰兰 《计算机与应用化学》2012,29(5):571-574
粒子群优化算法是一种基于群体智能的随机优化算法,具有收敛速度快、设置参数少、算法简单、容易实现等优点,其缺点是容易陷入局部最优解。变尺度法是一种可靠的局部快速寻优方法。为了解决了基本粒子群优化算法易陷入局部最优的问题,本文提出了一种基于变尺度方法的自适应变异粒子群优化算法。在本文算法中,粒子群每进化一代后,对所有粒子执行变尺度搜索,寻找更优个体,从而使算法具有动态自适应性,能够较容易地跳出局部最优。在延迟焦化生产过程中,汽油干点是衡量汽油的一个关键指标,建立汽油干点的软测量对延迟焦化生产实现卡边控制和提高装置的经济效益是有必要的。在实际生产过程中,无法在线测量延迟焦化汽油干点,只能采用离线实验室分析的方法获得,但离线分析不能满足控制的要求。基于软测量技术而开发的延迟焦化汽油干点软测量模型,使汽油干点的在线测量成为可能。目前,工程上一般采用BP神经网络来训练软测量模型。BP神经网络的学习算法是决定BP神经网络预测质量的关键。鉴于此,本文将所提出的变尺度粒子群优化算法用于BP神经网络学习过程中,并将本文方案的预测结果与文献方案进行了对比实验。实验结果表明,与文献方案相比,本文方案具有较好预测精度和良好的泛化能力,具有较好的应用价值。 相似文献
14.
针对粒子群算法(Particle Swarm Optimization,PSO)易陷入局部极值的缺陷,提出了一种新的自适应惯性权重混沌PSO算法(a New Chaos Particle Swarm Optimization based on Adaptive Inertia Weight,CPSO-NAIW)。首先采用新的惯性权重自适应方法,很好地平衡粒子的搜索行为,减少算法陷入局部极值的概率,然后在算法陷入局部极值时,引入混沌优化策略,对群体极值位置进行调整,以使粒子搜索新的邻域和路径,增加算法摆脱局部极值的可能。最后,实验结果表明,CPSO-NAIW算法能有效避免陷入局部极值,提高算法性能。 相似文献
15.
为提高节点在无线传感器网络中的自部署性能,本文以虚拟力导向粒子群算法为基石,在部署区域内,采用正方形网格划分方式,并引入一种改进的自适应差分进化策略,对原算法进行改进。改进算法引入了移动目的地对移动节点的引力作用,并通过自适应调整,有目的的向扩大网络覆盖率的目标进化,从而最大限度地优化节点的部署速度和网络的覆盖率。通过对该算法的性能进行了仿真与分析,在网络覆盖率、算法收敛速度以及部署时间等方面,相比于经典虚拟力算法及虚拟力导向粒子群算法,该算法具有更佳的部署性能。 相似文献
16.
基于自主学习和精英群的多子群粒子群算法 总被引:1,自引:0,他引:1
为了提高动态多子群粒子群算法中粒子学习的自主性,提出一种基于自主学习和精英群的粒子群算法.该算法借鉴教育心理学自主学习的理念,用基础群中粒子自主选择学习对象的操作代替子群的重组操作,并通过精英群局部搜索的配合来达到寻优的目的.将所提出的算法应用于6个测试函数,并与动态多子群PSO等算法进行了比较,比较结果表明,新算法在提高收敛速度、精度和寻优时间等方面具有良好的性能。 相似文献
17.
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。 相似文献