首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
给出了三阶常系数非齐次线性微分方程的三种积分形式的公式特解,可以将该方法推广到求n阶方程的特解。  相似文献   

2.
对于n阶常系数非齐次线性微分方程,当f(x)分别为Pm(x),和时,给出了求特解的统一方法:"降阶法",有别于大多数《常微分方程》教材中的传统方法:"待定系数法"。  相似文献   

3.
针对自由项为几类常见类型的三阶常系数非齐次线性微分方程,得到了求此类微分方程的特解公式,使求三阶常系数非齐次线性微分方程的特解更加简易。  相似文献   

4.
对于二阶常系数非齐次线性微分方程:y″ py′ qy=f(x),给出了当特征根r1与r2不等时的特解公式,利用该公式,只需求出两个一阶线性微分方程的特解,就可以得到相应二阶常系数非齐次线性微分方程的特解。  相似文献   

5.
给出一种求n阶常系数非齐次微分方程特解的新方法。这个方法较待定系数法、算子法、Laplace变换法、Lagrange变动参数法简捷。  相似文献   

6.
介绍部分分式法求常系数非齐次线性微分方程的特解。  相似文献   

7.
研究在一般条件下n阶常系数非齐次线性微分方程通解的求法,推广了通常只对二阶常系数非齐次线性微分方程在特殊条件下求通解的方法.应用该方法,可求出在实际中出现的问题所需要的通解.  相似文献   

8.
一类二阶常系数非齐次线性微分方程的特解   总被引:1,自引:0,他引:1  
利用二阶常系数非齐次线性微分方程求特解的待定系数法, 得到求一类特殊形式的二阶常系数非齐次线性微分方程特解的公式.这些公式很有规律性,并可以简化求特解的问题.  相似文献   

9.
当非齐次项是正弦函数(或余弦函数)且算子多项式中既有D的奇次幂又有D的偶次幂时,证明了求特解的法则。对符合法则条件的情形,利用该法则,任何一个高阶常系数线性微分方程求特解的问题都可以转化为一阶微分方程来处理。  相似文献   

10.
二阶常系数线性微分方程特解的微分算子法   总被引:1,自引:2,他引:1  
微分算子法是求解常系数非齐次线性微分方程特解的有效方法,基于算子多项式的理论,针对二阶常系数线性微分方程,论文给出了非线性项为指数函数、三角函数、幂函数及其混合函数的微分算子特解公式,实例表明特解公式在解题中具有可应用性、有效性和简捷性.  相似文献   

11.
针对在高等数学的其它分支及相关学科中常常出现求解高阶非齐次线性微分方程及一阶非齐次线性微分方程组的问题,将一阶非齐次线性微分方程的常数变易法推广到n阶非齐次线性微分方程、一阶非齐次线性微分方程组,得出了其通解公式,并通过实例进行了验证.  相似文献   

12.
算子法求非齐次常系数线性微分方程组的特解   总被引:1,自引:0,他引:1  
提出求非齐次常数线性微分方程特解的一种简捷方法-算子解法,并且总结出运用此解法常用的7个计算公式。  相似文献   

13.
给出了三阶非齐次欧拉方程的三种积分形式的特解公式,同时也得到了求n阶非齐次欧拉方程的特解公式。  相似文献   

14.
对变系数线性齐次微分方程组的特殊类型的求解问题进行了探讨,给出了系数矩阵为A(x)(各元素为x的多项式)的一阶线性齐次微分方程组解的结构定理,以及系数矩阵为Af(x)(A为n阶常数矩阵,f(x)为可积函数)的一阶线性齐次微分方程组解的结构定理,并通过实例给出了具体的求解方法.  相似文献   

15.
线性微分方程组的基本解组新探   总被引:1,自引:1,他引:0  
对变系数线性齐次微分方程组的特殊类型的求解问题进行了探讨,给出了系数矩阵为A(x)(各元素为x的多项式)的一阶线性齐次微分方程组解的结构定理,以及系数矩阵为Af(x)(A为n阶常数矩阵,f(x)为可积函数)的一阶线性齐次微分方程组解的结构定理,并通过实例给出了具体的求解方法。  相似文献   

16.
研究了二阶常系数非齐次线性微分方程在自由项不同情况下,用三种不同的方法,求初值问题的解;并进行比较,得出了一些有用的结果。  相似文献   

17.
关于高阶常系数非齐次线性微分方程特解的求法,国内的《常微分方程》教材大多采用待定系数法进行求解,当方程的阶数较高时此方法较为繁琐。文章除了介绍高阶方程的待定系数法外,还介绍了常数变易法、拉普拉斯变换法、微分算子法,分析了各种解法的优缺点及适合的方程类型.  相似文献   

18.
关于一个线性算子群的问题   总被引:1,自引:1,他引:0  
在一个线性算子群应用于二阶线性发展方程求解的思路基础上[1],归纳其中的生成算子为n阶矩阵形式,进一步提出了该生成算子的线性算子群,在巴拿赫空间中证明了这个线性算子群的基本特征,且是高阶线性发展方程求解理论的基础部分。当然,低阶线性发展方程的解为其特殊情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号