首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The passivation behaviour of a super duplex stainless steel has been investigated in a boric-borate buffer solution with and without chloride additions, at different temperatures, by means of potentiodynamic and potentiostatic techniques. X-ray photoelectron spectroscopy was used to detect surface compositional changes of anodic passive films formed as a function of electrode potential and temperature. The resulting passive films were all chromium enriched with respect to the bulk composition, and their thickness and ratio were found to vary significantly. In particular, the films formed in the passive domain were more enriched with chromium compared with those grown in the secondary passive region. At a constant potential the temperature increase produced a reduction in the chromium content of the film. These findings can be explained by the different ionic mobilities and dissolution rates at the film/solution and film/alloy interfaces. Pitting corrosion was observed only in the transpassive zone. A temperature increase from 23 to 60 °C did not produce a decrease in the pitting potential. This behaviour can be explained by the parallel action of two different phenomena, the change in the composition and structure of the passive film and the velocity increase in the process, which yield localized rupture of the passivity by the nucleation and growth of pits in connection with chromium depletion at high potentials.  相似文献   

2.
3.
The semiconducting property of passive films of nitrogen-containing type 316LN stainless steels in different electrolytic media (0.5 M NaCl, borate buffer and borate buffer + 0.5 M NaCl) was investigated by electrochemical impedance spectroscopy (EIS). The nitrogen effect on the chemical composition of the passive films was investigated using X-ray photoelectron spectroscopy, (XPS). Based on capacitance results, the semiconducting parameters obtained from the Mott-Schottky plots indicated a decrease in the donor and acceptor density (ND and NA) with increase in nitrogen content, and variation in the flat band potential (EFB), depending on the electrolytic media. Thus indicating that the oxide layers of the passive film are modified by nitrogen addition. The presence of nitrogen and in the passive film was confirmed by the XPS analysis of the passive film. Cyclic polarization for pitting and repassivation corrosion studies indicated a decrease in hysteresis loop with increase in nitrogen content in 0.5 M NaCl solution. In the highest nitrogen-containing alloy (0.556 wt.% N), the hysteresis loop was small and negligible indicating that the pit initiation is minimum in this alloy. Based on the results obtained, an attempt was made to correlate the semiconducting nature of the passive films with pitting corrosion resistance.  相似文献   

4.
4-(N,N-diethylamino)benzaldehyde thiosemicarbazone (DEABT) was studied for its corrosion inhibition property on the corrosion of aged 18 Ni 250 grade maraging steel in 0.67 M phosphoric acid at 30–50 °C by potentiodynamic polarization, EIS and weight loss techniques. Inhibition efficiency of DEABT was found to increase with the increase in DEABT concentration and decrease with the increase in temperature. The activation energy Ea and other thermodynamic parameters (Δ, Δ, Δ) have been evaluated and discussed. The adsorption of DEABT on aged maraging steel surface obeys the Langmuir adsorption isotherm model and the inhibitor showed mixed type inhibition behavior.  相似文献   

5.
Passive films formed on mild steel in aqueous 8.6 mM NaCl solutions (pH 8), containing either or , have been studied with X-ray photoelectron spectroscopy. For either anion these films are ∼5 nm deep, and the primary chemical state of iron is Fe3+. Following exposure to , the film consists of a sub-layer (∼4.1 nm) composed largely of ferric oxide/hydroxide, overlaid by Fe2(MoO4)3 (∼0.6 nm). As regards , spectra are consistent with the film being closely related to γ-Fe2O3. Furthermore, a reduction product of , potentially N2, is present, displaying a depth profile comparable to that of molybdate.  相似文献   

6.
The artificial β-FeOOH rusts were synthesized by oxidation of FeCl2 solutions and hydrolysis of FeCl3 solutions. Various Na salts such as sulfate, biphosphate, nitrate, and silicate were added to the starting solutions at different anion/Fe molar ratios of 0-0.05. The XRD patterns of the products showed only the diffraction peaks of β-FeOOH. The crystallinity of the products was noticeably reduced by adding and but slightly influenced by adding . The addition of markedly crystallized the products by the hydrolysis of FeCl3. The N2 adsorption revealed that the products with were porous particles assembled by β-FeOOH subcrystals. and strongly coordinating to Fe(III) markedly lowered the crystallinity of the products and remained in the formed particles.  相似文献   

7.
Three synthesized organic compounds were tested as corrosion inhibitors for mild steel in sulfuric acid medium by potentiostatic polarization, FTIR spectroscopy and SEM techniques. Quantum chemical parameters were also calculated to characterize adsorption mechanism. Acceptable correlations were obtained between inhibition efficiency and the calculated quantum chemical parameters. It was found that the investigated compounds exhibit a good inhibition effect especially at 8-10 ppm range concentration, which makes them commercially important. The adsorption of inhibitors on the surface obeys Langmuir adsorption isotherm. The values of activation energy and the thermodynamic parameters, such as Kads, , and were calculated.  相似文献   

8.
Anodic corrosion of Ta is examined for potential applications in electrochemical-mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of (or Br) to form mechanically weak surface-oxide films, followed by mechanical removal of the latter. The voltammetric currents exhibit oscillatory behaviour with frequencies that are signature attributes of localised pitting by Br or general surface corrosion by . SEM, voltammetry, and impedance spectroscopy are used to probe these corrosion mechanisms. Apart from their relevance for ECMP, the results also address certain fundamental aspects of pitting and general corrosion of valve metals.  相似文献   

9.
Effect of Cefazolin on the corrosion of mild steel in HCl solution   总被引:1,自引:0,他引:1  
The adsorption and inhibition effect of Cefazolin on mild steel in 1.0 M HCl at 308-338 K was studied by weight loss, EIS, potentiodynamic polarization and atomic force microscopy techniques. The results showed that inhibition efficiency increased with inhibitor concentration. The adsorption of Cefazolin on mild steel surface obeys the Langmuir adsorption isotherm equation. Both thermodynamic (enthalpy of adsorption , entropy of adsorption and free energy of adsorption ) and kinetic parameters (activation energy and pre-exponential factor A) were calculated and discussed. Polarization curves showed that Cefazolin acted as mixed-type inhibitor controls predominantly cathodic reaction.  相似文献   

10.
Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (Ea) and different thermodynamic parameters such as adsorption equilibrium constant (Kads), free energy of adsorption , adsorption enthalpy and adsorption entropy were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.  相似文献   

11.
The influence of the concentration of adenine (AD), adenosine (ADS) on the electrochemical corrosion behavior of tin, indium and tin-indium alloys in 0.5 M HCl solution at different temperatures was studied. The investigation involved potentiodynamic cathodic polarization and extrapolation of cathodic and anodic Tafel lines techniques. The inhibition efficiency (IE%) increases with an increase in the concentration of adenine or adenosine of all investigated electrodes. The inhibition process was attributed to the formation of adsorbed film on the surfaces of the electrodes that protects the surface against corrosive agent. The data exhibited that the inhibition efficiency slightly decreases with increasing temperature.Frumkin adsorption isotherm fits well the experimental data. The plots of ln K vs. 1/T in the presence of the two studied inhibitors showed linear behavior. The standard enthalpy, , entropy, and free energy changes of adsorption were evaluated; the calculated values of and were negative while those for were positive. Mainly, all the above results are suggestive of physisorption of the inhibitor molecules on the surfaces of the investigated electrodes.  相似文献   

12.
In this study, the influence of various concentrations of dichromate and chloride ions on critical pitting temperature (CPT) of duplex stainless steel 2205 (DSS 2205) is investigated by employing potentiodynamic and potentiostatic CPT measurement methods. Potentiostatic results indicate that by adding 0.01 M to 0.1 M NaCl solution the CPT raised by 12 °C. Based on potentiodynamic CPT measurements in the solutions with ratio equal to one for solutions containing 0.1 M NaCl + 0.1 M and 0.01 M NaCl + 0.01 M , no CPT was detected up to 75 °C.  相似文献   

13.
New Pourbaix diagrams were calculated at 25, 75 and 95 °C for the Nb-H2O system. The species and were considered. Potentiodynamic polarization and mass loss experiments (14 days) were conducted in concentrated H2SO4 (20, 40 and 80 wt%) and HCl (20 and 38 wt%) solutions at 75 and 95 °C. Nb forms a metastable pentoxide (Nb2O5) in H2SO4 and HCl solutions which dissolves as . Corrosion rates decrease between the 40% and the 80% H2SO4 solutions. SEM micrographs show generalized pitting in the 20% and 40% H2SO4 solutions. Mass loss corrosion rates did not exceed 306 μm/yr. Corrosion rates estimated by Tafel extrapolation were within two orders of magnitude of those measured by mass loss and it is shown that this finding is consistent with the thickening of the oxide.  相似文献   

14.
The bi-layered polypyrrole (PPy) coatings were investigated for corrosion prevention of a carbon steel. The inner layer was doped with the Keggin structure anions of (PMo12) and anions for stabilization of the passive oxide film at the metal-polymer interface, and the outer layer was doped with four organic anions of dihydroxynaphthalenedisulfonate (DHNDS), naphthalenedisulfonate (NDS), anthraquinonedisulfonate (AnqDS) or dodecylsulfate (DoS) for inhibition of the decomposition and release of PMo12. The corrosion tests were performed in 3.5 wt.% NaCl aqueous solution. The corrosion resistance of the steels covered by the bi-layered PPy films was found in the following order: PPy-PMo12/PPy-DHNDS < PPy-PMo12/PPy-NDS < PPy-PMo12/AnqDS < PPy-PMo12/PPy-DoS. The performance of corrosion protection related to the oxidized state of the polymer was discussed.  相似文献   

15.
Effect of nitrogen on crevice corrosion in austenitic stainless steel   总被引:1,自引:0,他引:1  
H. Baba  Y. Katada 《Corrosion Science》2006,48(9):2510-2524
Corrosion properties of high nitrogen austenitic steels in chloride solutions have been investigated. Nitrogen behavior was evaluated at various electrode potentials, and analysis of the surface film was carried out with XPS. The alloy used for the experiments had a composition of 23%Cr-4%Ni-0-1%Mo-0.7-1%N and was obtained through electro-slag remelting (ESR) under high nitrogen pressure. High nitrogen austenitic steel produced in the solution by crevice corrosion under a constant potential of 0.2 V (SCE). In the transpassive region and at 0.7 V (SCE), the products in the solution were , and . The amount of dissolved and increased with the electrode potential. in the solution suppressed decreases of pH, having a re-passivation effect. For crevice corrosion under a higher electrode potential than 0.4 V (SCE), the number of crevice corrosion points and the corrosion loss decreased as the electrode potential increased. This behavior can be attributed to the corrosion suppressing effect of dissolved in the solution as a product of crevice corrosion. The presence of chromium and iron oxides in the passivation film and crevice corrosion surface film were identified from XPS analysis. N 1s spectra indicated the presence of a nitride (CrN) or NH3.  相似文献   

16.
Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), weight loss measurements and atomic force microscopy techniques were used to investigate the inhibitory effect of diethylcarbamazine (DECM) on corrosion of mild steel in HCl solution. The inhibitor showed >90% inhibition efficiency at 5.01 × 10−4 M. Results obtained revealed that inhibition occurs through adsorption of inhibitor molecules on metal surface without modifying the mechanism of corrosion process. Potentiodynamic polarization studies suggested that it is a mixed type inhibitor, predominantly controls cathodic reaction. Activation parameters (Ea, ΔH and ΔS) and thermodynamic parameters (, and ) were calculated to investigate mechanism of inhibition.  相似文献   

17.
The anodic behaviour of Al in gluconic acid (HG) solutions was studied. Al was found to pit in such solutions. Surface and cross-sectional views of the SEM images recorded beyond the breakdown potential (Eb) revealed the occurrence of intense pitting attack with the formation of large hemispherical pits. The effect of adding some environmentally acceptable inorganic inhibitors (tungstates, molybdates or silicates) on the pitting corrosion behaviour of Al in HG solutions was also studied. Measurements were carried out under the influence of various experimental variables based on polarization and chronoamperometric techniques. These measurements were complemented by ex situ scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) examinations of the electrode surface. The presence of these compounds in HG solutions decreased the passive current density (jpass) and increased Eb. In HG solutions, chronoamperometric measurements showed that the anodic current density first decreased, due to growth of a passive oxide film, then increased with time after a pit incubation time, ti and finally attained a steady-state value. Value of ti was shortened and simultaneously the steady-state current was elevated, corresponding to an increase in the rate of pit initiation and growth, with increasing applied anodic potential and HG concentration. The rate of pit nucleation () was found to decrease to an extent depending on the type and concentration of the introduced inhibitor. The inhibitory effect of these compounds decreased in the order:  >  > .  相似文献   

18.
The corrosion of tin electrode in sodium borate (Na2B4O7) solutions was investigated using cyclic voltammetry and potentiostatic current transient techniques. In absence of halide ions, the E/j response exhibits active/passive transition. The active region involves one anodic peak corresponding to the formation of Sn(OH)2 and/or SnO. Addition of Cl, Br or I (C ? 0.01 M) ions inhibits the active dissolution of tin, but higher concentrations enhance the active dissolution and tend to breakdown the passive film and induce pitting attack. The effect of , , and as inorganic inhibitors on the pitting corrosion of tin in (0.1 M Na2B4O7 + 0.1 M NaCl) solution has also been studied. The presence of these anions (except ) inhibits pitting corrosion. Chronoamperometry measurements showed that nucleation of pit takes place after an incubation time (ti). The rate of pit nucleation () increases with increasing halide ions concentration and applied potentials, but decreases with increasing the concentration of the inorganic inhibitors (except ). The inhibition efficiency of these inhibitors decreases in the order:
  相似文献   

19.
Corrosion fatigue behaviour of four types of austenitic stainless steels were investigated in boiling 45% magnesium chloride solution at a stress ratio of 0.25 and a frequency of 0.1 Hz. Type 316LN stainless steel possessed the best resistance and type 304 stainless steel had the lowest resistance to corrosion fatigue. XPS studies on the fracture surface indicated that the presence of nitrogen as ion in the surface film of type 316LN stainless steel gave it the highest resistance to corrosion fatigue. Fractographic examination showed wholly transgranular cracking in all cases.  相似文献   

20.
The slip-dissolution model of stress-corrosion crack growth is reviewed and developed from several points of view: the differences between ‘discontinuous’ (Vermilyea) and ‘continuous’ (Ford, Andresen, Shoji) versions of the model; stability and possible multiplicity of predicted crack velocities for given mechanical parameters, and the sensitivity of the predicted crack velocity to small variations in the electrochemical and mechanical parameters. We find that for relatively steep anodic current decays on the bare metal surface at the crack tip (for example, i ∼ tm with m = 0.8), the output of the continuous type of model is extremely sensitive to the strain hardening exponent and to the location or cutoff distance in the logarithmic plastic strain distribution at which the crack-tip strain rate is calculated. Difficulties also appear because this distance is likely to be a function of other parameters such as yield stress. The handling of loading rate () effects in Shoji’s treatment appears unrealistic, leading to a much too weak dependence of the crack-tip strain rate on . However, irrespective of how is introduced, dual crack velocity solutions are found for negative ; the stability of these is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号