首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron(II) hydroxide and hydroxychloride precipitates were obtained by mixing FeCl2 · 4H2O and NaOH aqueous solutions with various concentration ratios R′ = [Cl]/[OH] = 2 [FeCl2]/[NaOH] at [NaOH] = 0.4 mol L−1. They were analysed by Infrared spectroscopy after 24 h of ageing at room temperature. Fe(OH)2 was obtained alone only for the smallest values of R′, typically R′ ? 1.16. β-Fe2(OH)3Cl formed as soon as R′ ? 1.40 and was obtained alone for R′ ? 2.25. The initial precipitates were oxidised by addition of a small amount of hydrogen peroxide (5 mL of an aqueous solution containing approximately 30 vol% H2O2) instead of O2. The action of H2O2 on Fe(OH)2 gave rise to δ-FeOOH as already reported. Its action on Fe(II) hydroxychlorides gave rise to akaganéite β-FeO1−2x(OH)1+xClx. A transformation of the two-phase system found at R′ = 1.5 after long ageing times (6 months) was observed and β-Fe2(OH)3Cl remained alone. This slow transformation of Fe(OH)2 into β-Fe2(OH)3Cl may explain why β-Fe2(OH)3Cl was only reported as a corrosion product on iron archaeological artefacts. Finally, the respective domains of stability of Fe(OH)2 and β-Fe2(OH)3Cl were demarcated and an estimation of the standard Gibbs free energy of formation of β-Fe2(OH)3Cl could be given: .  相似文献   

2.
An iron ingot immersed during 2000 years at 12 m depth in the sea has been examined with the help of a combination of microscale techniques. This methodology allowed us to show that the main phase precipitated during the immersion is an iron hydroxychloride (β-Fe2(OH)3Cl) that is characteristic of corrosion in anoxic and chlorinated medium. Moreover locally on the external part of the corrosion products sulphur containing phases have been identified as mackinawite (FeS) in nanocrystalline or slightly oxidised state. The presence of this phase could be explained by the activity of sulphate-reducing bacteria. The presence of β-Fe2(OH)3Cl could be interpreted via a thermodynamic modelling taking into account the environmental conditions.  相似文献   

3.
Deterioration after excavation of archaeological iron artefacts buried in soil is often associated with the presence of Cl-containing phases in corrosion products, leading to serious problems for conservation of metallic objects of cultural heritage. Thus, in order to better understand the corrosion process related to the presence of chlorine, some high-resolution techniques of materials characterisation are implemented. Particularly this paper shows the great utility of the combination of micro-X-ray diffraction, micro-Raman spectroscopy and micro-X-ray absorption spectroscopy. The analyses are realised on the cross sections of iron corroded objects excavated on archaeological sites dated from the 12th to the 16th century AD. In addition to the common oxyhydroxide containing chloride, akaganeite (β-FeOOH) often mentioned in the literature, a ferrous hydroxychloride β-Fe2(OH)3Cl was also found in the corrosion layers. In order to explain the corrosion system formed during burial, a corrosion mechanism including the presence of chlorine, is proposed.  相似文献   

4.
Four pigments of various morphology – specularite, α-Fe2O3; goethite, α-FeO(OH); talc, (Mg3(OH)2(Si4O10); and graphite, C – without and with polyaniline phosphate coating, were tested for the anticorrosion performance in coatings produced by epoxy binders on iron plates. The corrosion tests were carried out in a condenser chamber with continuous water condensation or humidity with sulfur dioxide, and in a salt mist cabinet. Polyaniline coating of pigments in all cases improved the anticorrosion properties. Graphite coated with polyaniline performed the best among eight systems under investigation. The role of graphite and polyaniline conductivity in the electron transfers associated with corrosion of iron has been proposed.  相似文献   

5.
Galfan coatings on steel in laboratory exposures with predeposited NaCl and cyclic wet/dry conditions exhibit nearly the same corrosion products as after 5 years of marine exposure. A general scenario for corrosion product evolution on Galfan in chloride-rich atmospheres is proposed. It includes the initial formation of ZnO, ZnAl2O4 and Al2O3 and subsequent formation of Zn6Al2(OH)16CO3⋅4H2O, and Zn2Al(OH)6Cl⋅2H2O and/or Zn5Cl2(OH)8⋅H2O. An important phase is Zn6Al2(OH)16CO3⋅4H2O, which largely governs the reduced long-term zinc runoff from Galfan. A clear influence of microstructure could be observed on corrosion initiation in the slightly zinc-richer η-Zn phase adjacent to the β-Al phase.  相似文献   

6.
The corrosion products Cu2(OH)3Cl, Cu2O, and CuCl2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu2O is prevailing over the Cu2(OH)3Cl and CuCl2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu2(OH)3Cl and CuCl2 prevailing over the Cu2O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu2(OH)3Cl prevailing over CuCl2 and Cu2O was not identified.  相似文献   

7.
The formation of corrosion products on Zn55Al coated steel has been investigated upon field exposures in a marine environment. The corrosion products consisted mainly of zinc aluminium hydroxy carbonate, Zn0.71Al0.29(OH)2(CO3)0.145·xH2O, zinc chloro sulfate (NaZn4(SO4)Cl(OH)6·6H2O), zinc hydroxy chloride, Zn5(OH)8Cl2·H2O and zinc hydroxy carbonate, Zn5(OH)6(CO3)2 were the first three phases were formed initially while zinc hydroxy carbonate Zn5(OH)6(CO3)2 was formed after prolonged exposure in more corrosive conditions. The initial corrosion product formation was due to selective corrosion of the zinc rich interdendritic areas of the coating resulting in a mixture of zinc and zinc aluminium corrosion products.  相似文献   

8.
The mechanism of corrosion product flaking on bare copper sheet and three copper-based alloys in chloride rich environments has been explored through field and laboratory exposures. The tendency for flaking is much more pronounced on Cu and Cu–4 wt%Sn than on Cu–15 wt%Zn and Cu–5 wt%Al–5 wt%Zn. This difference is explained by the initial formation of zinc and zinc–aluminum hydroxycarbonates on Cu15Zn and Cu5Al5Zn, which delays the formation of CuCl, a precursor of Cu2(OH)3Cl. As a result, the observed volume expansion during transformation of CuCl to Cu2(OH)3Cl, and concomitant corrosion product flaking, is less severe on Cu15Zn and Cu5Al5Zn than on Cu and Cu4Sn.  相似文献   

9.
In the present work iron oxide nanoparticles have been prepared by microwave assisted synthesis with the influence of different precursor salts and synthesis of magnetite, hematite, Iron oxide hydroxide and maghemite nanoparticles. Synthesized iron oxide nanoparticles were characterized with Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Energy-dispersive X-ray Spectroscopy (EDX). XRD measurements show that the peaks of diffractogram are in agreement with the theoretical data of magnetite, hematite, FeO(OH) (Iron oxide hydroxide) and maghemite. Crystallite size of the particles was found to be 33, 45, 36 and 43.5 nm for Fe3O4, α-Fe2O3, FeO(OH) and γ-Fe2O3. FESEM studies indicated that size of the particles is observed in the range of about 19.4 to 46.7 nm (Fig. 2a, average 32 nm), 29.1 to 67.6 nm (Fig. 2b average 45 nm), 29.1 to 40.8 (Fig. 2c average 36.6 nm), 29.1 to 80 nm (Fig. 2d average 43.5) for Fe3O4, α-Fe2O3, FeO(OH) and γ-Fe2O3 respectively. EDX spectral analysis reveals the presence of carbon, oxygen, iron in the synthesized nanoparticles. The FTIR graphs indicated absorption bands due to O–H stretching, C–O bending, C–H stretching and Fe–O stretching vibrations.  相似文献   

10.
The reactivity of zinc under synthetic zinc patinas and the galvanic coupling in steel/patina/Zn are studied. Zn5(OH)6(CO3)2 and Na2Zn3(CO3)4⋅3H2O inhibit zinc anodic dissolution in NaCl, while Zn5(OH)8Cl2 H2O and Zn4(OH)6SO4 nH2O do not. The galvanic current in steel/patina/NaCl/Zn is smaller as compared to steel/NaCl/Zn. The inhibiting effect decreases with time for Na2Zn3(CO3)4⋅3H2O or Zn4(OH)6SO4 nH2O due to the transformation into Zn(OH)2. In NaHCO3, the polarity between zinc and steel can reverse. The effect of confinement on the cathodic current is stronger than the initial effect of patina which is explained by the instability of the patinas under rapid pH-increase.  相似文献   

11.
Interior scales on PVC, lined ductile iron (LDI), unlined cast iron (UCI) and galvanized steel (G) were analyzed by XRD, RMS, and XPS after contact with varying water quality for 1 year. FeCO3, α-FeOOH, β-FeOOH, γ-Fe2O3, Fe3O4 were identified as primary UCI corrosion products. No FeCO3 was found on G. The order of Fe release was UCI > G ? LDI > PVC. For UCI, Fe release decreased as % Fe3O4 increased and as % Fe2O3 decreased in scale. Soluble Fe and FeCO3 transformation indicated FeCO3 solid was controlling Fe release. FeCO3 model and pilot data showed Fe increased as alkalinity and pH decreased.  相似文献   

12.
Abstract

Scanning electron microscopy analysis, X-ray powder diffraction and room temperature 57Fe Mössbauer spectroscopy were used to identify the corrosion products of uncoated and coated low alloy steels (LAS) and low carbon steels (LCS) resulting from an accelerated steam oxidation test for 180 h at 660°C. From the Mössbauer spectral analysis, it was shown that in all cases, a series of iron compounds such as α-Fe2O3, Fe3O4, γ-Fe2O3, δ-FeOOH, α-FeOOH, Fe(OH)2 and Fe(OH)3 were formed, while XRD measurements revealed only the α-Fe2O3 and/or Fe3O4/γ-Fe2O3 phases. In the LAS uncoated sample, an amorphous phase with magnetic features is found. In the spectra of the borided samples and of the uncoated LCS, an additional doublet was observed, which reveals the presence of a superparamagnetic phase. From the relative areas of the subspectra, it is concluded that the boron aluminised sample underwent the lowest degradation. The mechanism proposed for corrosion products formation is based on the dissociation process.  相似文献   

13.
Effects of morpholine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and dimethylamine (DMA) on oxidation kinetics and oxide phase formation/transformation of AISI 1018 steel at 120 °C were evaluated. Low carbon steel samples were exposed to steam in an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 h. Control samples exposed to plain steam and amines showed the highest and lowest weight loss respectively. Fourier Transform Infrared Spectrophotometry (FTIR) showed that DBU containing steam favored formation of magnetite (Fe3O4) while steam with DMA formed more α and γ-FeOOH. Transformation of magnetite to hematite (α-Fe2O3) was fastest for morpholine. Analysis of oxides morphology was done utilizing Scanning Electron Microscopy (SEM). Oxides formed in plain or DMA containing steam exhibited acicular particles of goethite/hematite (α-FeOOH/α-Fe2O3) compared to DBU containing steam that showed equiaxed particles of magnetite/maghemite (Fe3O4/γ-Fe2O3). Morpholine containing steam promoted agglomeration of thin sharp platelets into coarse flakes of hematite.  相似文献   

14.
Iron(II-III) hydroxysulphate GR(SO42−) was prepared by precipitating a mixture of Fe(II) and Fe(III) sulphate solutions with NaOH, accompanied in most cases by iron(II) hydroxide, spinel iron oxide(s) or goethite. Its [Fe(II)]/[Fe(III)] ratio determined by transmission Mössbauer spectroscopy was 2±0.2, whatever the initial [Fe(II)]/[Fe(III)] ratio in solution. Proportion of Fe(OH)2 increased when the initial [Fe(II)]/[Fe(III)] ratio increased, whereas proportion of α-FeOOH or spinel oxide(s) increased when this ratio decreased. GR(SO42−) is metastable vs. Fe3O4 except in a limited domain around neutral pH. Precipitation from solutions containing both Fe(II) and Fe(III) dissolved species seems to favour GRs formation with respect to stable systems involving iron (oxyhydr)oxides.  相似文献   

15.
The chemical and mineral compositions of bauxite recovered from the Severoonezhsk Bauxite Mine (Arkhangelsk region, Russia) were studied by XRD, ICP-OES, TG/DSC, SEM, TEM, and Mössbauer spectroscopy. The iron-containing minerals of the bauxites were found to comprise alumogoethite (α-Fe1–xAlxOOH), alumohematite (α-(Fe1–xAlx)2O3), alumoakaganeite (β-Fe1–xAlxO(OH,Cl)), and chromite (FeCr2O4). The efficiency of Fe extraction from the bauxite by HCl leaching was 82.5% at 100 °C, HCl concentration of 10%, solid/liquid ratio of 1:10, and the process duration of 60 min, with aluminum loss from the bauxites below 4.5% of the total Al contents in the bauxite. Analysis of the kinetics of the iron leaching process proved diffusion to be the limiting stage of the process at 90–100 °C. Bauxite residue after leaching presented traces of α-Fe1–xAlxOOH and β-Fe1–xAlxO(OH,Cl), and most of the iron content was in the FeCr2O4. In bauxite residue after HCl leaching, in addition to iron oxide, the contents of chromium and calcium oxides significantly decreased. The iron chloride liquor after leaching contained the rare earth elements (REE) of 6.8 mg/L Sc, 4.1 mg/L Ce and 2.3 mg/L Ga.  相似文献   

16.
The mechanism of the formation of zinc (Zn) pack coatings is studied with scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). DSC showed that the coatings formation takes place in three steps. The initial step (at 193.9 °C) is endothermic and involves the transformation of α-NH4Cl to β-NH4Cl and the NH4Cl decomposition to NH3 and HCl. During the second step (at 248.6 °C), which is exothermic, Zn2+ salts are formed and especially ZnCl2. Finally at 264.1 °C Zn is deposited by an endothermic reaction on the ferrous substrate through the decomposition of ZnCl2. The as-cast Zn diffuses into the iron lattice forming the gamma (Γ-Fe11Zn40) and delta (δ-FeZn10) phases. Al2O3 is not involved in the above-mentioned mechanism and acts only as filler.  相似文献   

17.
The corrosion products formed on the inner wall of pipes made of galvanized low carbon steel, exposed for ∼2 years to water flowing in a large household heating system, were analysed using X-ray diffraction, Mössbauer and Raman spectroscopic techniques, as well as metallographic techniques. Products grew in the form of large-sized tubercles that gradually developed causing base metal losses up to perforation of the steel pipe. Considerable differences in the phase composition were found between the products formed in contact with the steel and those constituting the outer part of tubercles. The former were mainly made of FeCO3 (siderite), with small amounts of Zn5(CO3)2(OH)6 (hydrozincite), ZnCO3 (smithsonite), (Fe,Zn)CO3 mixed carbonate and CaCO3 (calcite), the latter mainly by Fe(III) oxyhydroxide goethite. Both parts of the tubercles also contained small amounts of other ferric oxyhydroxides, γ-FeOOH (lepidocrocite) and β-FeOOH (akaganeite), and very small amounts of hematite. The procedures used proved effective for an adequate identification of both the iron-containing and iron-free compounds in the corrosion products as well as for suggesting a corrosion mechanism.  相似文献   

18.
Iron-silicide was produced with a mechanical alloying process and consolidated through vacuum hot pressing. The as-milled powders were of metastable state and fully transformed into the ß-FeSi2 phase through subsequent isothermal annealing. The as-consolidated iron silicides consisted of an untransformed mixture of α-Fe2Si5 and ?-FeSi phases and a partially transformed β-FeSi2 phase was found in the low density compact. Isothermal annealing was carried out to induce transformation into a thermoelectric semiconducting β-FeSi2 phase. The transformation behavior of the β-FeSi2 was investigated utilizing DTA, SEM, and XRD analyses. Isothermal annealing at 830°C in vacuum led to a thermoelectric semiconducting β-FeSi2 phase transformation, but some residual metallic α and ?-phases were unavoidable even after 96 hours of annealing. The iron silicide microstructures were investigated using SEM and TEM. The mechanical and thermoelectric properties of the β-FeSi2 materials before and after isothermal annealing are characterized in this study.  相似文献   

19.
Copper scales formed over 6-months during exposure to ground, surface and saline waters were characterized by EDS, XRD and XPS. Scale color and hardness were light red-brown-black/hard for high alkalinity and blue-green/soft for high SO4 or Cl waters. Cl was present in surface or saline copper scales. The Cu/Cu2O ratio decreased with time indicating an e transfer copper corrosion mechanism. Cu2O, CuO, and Cu(OH)2 dominated the top 0.5-1 A° scale indicating continuous corrosion. Cu2O oxidation to CuO increased with alkalinity, and depended on time and pH. Total copper release was predicted using a Cu(OH)2 model.  相似文献   

20.
The oxidation of hydrosulphate green rust (GR2(SO42−)) suspension containing different chromium ion species was investigated by X-ray diffraction, X-ray absorption spectroscopy and transmission electron microscopy. The pH, oxidation-reduction potential and amount of dissolved oxygen in aqueous solutions were measured during the reactions. The results show that the addition of Cr(III)2(SO4)3 solution suppresses the transformation of GR2(SO42−) into iron oxyhydroxides and oxides in aqueous solution, while the addition of Na2Cr(VI)O4 solution promotes the transformation of GR2(SO42−) in which Cr(VI) is reduced to Cr(III); α-FeOOH particles were refined by the addition of the chromium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号