共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystal 321 stainless steel stress corrosion cracking was studied in a 42 wt.% MgCl2 solution. Cracks propagated macroscopically in the maximum tensile stress plane regardless of the notch orientation with respect to the applied tensile load direction. Some stress corrosion cracks nucleated discontinuously at the intersection of the two slip bands. Most cracks, however, were not related to the slip bands. Cleavage-like fracture was observed, and the river-markings exhibited microshear facets along the {1 1 1} plane. Interaction between the main crack and the discontinuous microcracks increased the calculated stress intensity factor by 17 times and promoted crack coalescence, resulting in mechanical fracture of the ligaments between the cracks. 相似文献
2.
This paper presents the role of addition of nitrite ions in susceptibility of a super duplex stainless steel, SAF 2507 to stress corrosion cracking (SCC) in chloride environment, which has a particular industrial relevance. Slow strain rate testing (SSRT) in 30 wt.% MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. However, the addition of nitrite has interesting influence. At their lower concentrations, nitrite additions seem to decrease SCC susceptibility, whereas, at a higher concentration, it has an accelerating effect on SCC. Attempts have been made to understand this behaviour on the basis of the role of nitrite in passivation and pitting characteristics of SAF 2507 in chloride solution. 相似文献
3.
Toshio Shibata 《Corrosion Science》2007,49(1):20-30
Passivity breakdown of stainless steel is an important initial process for starting stress corrosion cracking. It was found that small amount of impurities in environments affects the initiation process, but do not affect the propagation process of SCC. The environmental effect on the initiation process is rationally explained by introducing “bound water model” of passive film and HSAB (Hard and Soft Acid and Base) rule. Background of the issue including bound water model and HSAB rule was discussed. 相似文献
4.
The impact of a temperature excursion on the subsequent stress corrosion crack growth at the normal operating temperature has been investigated for 321 stainless steel (UNS32100) and 316L stainless steel (UNS31603) using precracked compact tension specimens. Although the data are preliminary the indication is that once crack growth has initiated in 321 SS at the elevated temperature, 130 °C in this study, the crack growth may be sustained at the lower temperature (40 °C), at least over the exposure time of about 700 h. However, the growth rate of 316L SS at the lower temperature was significantly lower than for 321 SS and tended to zero after 2000 h. For the 316 SS a temperature transient should not impact on structural integrity, provided it is short in duration. 相似文献
5.
S. Majid Ghahari Alison J. Davenport Trevor Rayment Thomas Suter Jean-Philippe Tinnes Cristiano Padovani Joshua A. Hammons Marco Stampanoni Federica Marone Rajmund Mokso 《Corrosion Science》2011,53(9):2684-2687
Pitting corrosion of stainless steel has been investigated with high-resolution in situ X-ray microtomography. The growth of pits at the tip of stainless steel pins has been observed with 3D microtomography under different conditions of applied current and cell potential. The results demonstrate how pits evolve in stainless steel, forming a characteristic “lacy” cover of perforated metal. In addition, it is shown how the shape of pits becomes modified by MnS inclusions. 相似文献
6.
Stress corrosion cracking (SCC) susceptibility of austenitic Fe18Cr10Mn alloys with 0.3N, 0.6N and 0.3N0.3C was investigated in aqueous chloride environment using a slow strain rate test method. The SCC susceptibility of Fe18Cr10Mn alloys in 2 M NaCl solution at 50 °C under constant anodic potential condition decreased with increase in N content from 0.3 to 0.6 wt%, and with addition of 0.3 wt% C to the Fe18Cr10Mn0.3N alloys. The present study strongly suggested that the beneficial effects of N and C on the SCC behavior of Fe18Cr10Mn alloys would be associated with the resistance to pitting corrosion initiation and the repassivation kinetics. 相似文献
7.
Keiichiro Tohgo Hiromitsu Suzuki Yoshinobu Shimamura Guen Nakayama Takashi Hirano 《Corrosion Science》2009,51(9):2208-2217
Stress corrosion cracking (SCC) on a smooth surface of structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under combination of material, stress and corrosive environment. In this paper, a Monte Carlo simulation of the SCC process is proposed based on stochastic properties for micro crack initiation and concepts in fracture mechanics for crack coalescence and propagation. The procedure is as follows: The possible number of grain-sized micro cracks which can be initiated is set for a given space and initiation times for all cracks are assigned by random numbers based on exponential distribution. Sites and sizes of cracks are assigned by uniform random numbers and normal random numbers, respectively. Coalescence and propagation of cracks are determined based on fracture mechanics. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on the results of creviced-bent-beam tests for sensitized stainless steel type 304 under high-temperature and high-purity water containing dissolved oxygen and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. 相似文献
8.
Long term exposure tests have been carried out on a 3 NiCrMoV steam turbine disc steel in the form of cylindrical tensile test specimens self-loaded to 90% of σ0.2 and exposed to three environmental conditions, viz. deaerated pure water, aerated pure water, and aerated water containing 1.5 ppm of chloride ion. Pitting occurred in all environments but the density and depth of pits in the chloride-containing medium was markedly greater. No cracking was observed in deaerated pure water but cracks initiated in aerated water between 13 and 19 months and in less than 7 months in aerated 1.5 ppm Cl− solution. The probability of a crack initiating from a pit of specific depth in aerated solution could be described well by a Weibull function. Profiling of pits and cracks in the disc steel tested in aerated 1.5 ppm Cl− solution showed that there while there were many cracks with a depth greater than that of the corresponding pit the depth of some cracks was smaller than that of the corresponding pit, suggesting that cracks do not necessarily initiate from the bottom of the pits. The growth rate of short cracks emerging from pits appeared greater than that of long cracks in fracture mechanics specimens. 相似文献
9.
The microstructure of grade X4CrNiMo16.5.1 stainless steel was studied at different scales. The chemical composition of the native passive film formed on the different phases was then determined at the microscale. The degree of homogeneity of the native passive film is discussed. Subsequently, the susceptibility to pitting corrosion of X4CrNiMo16.5.1 was quantified using the electrochemical microcell technique. The nature of precursor sites and the morphology of pits were investigated by combining scanning electron microscopy with Electron BackScatter Diffraction and potentiostatic pulse tests. The role of the microstructure and the cold-worked layer generated by polishing in pitting is discussed. 相似文献
10.
Mill-annealed AISI type 316LN stainless steels, received from two different sources (one indigenous (SS-2) and the other foreign (SS-1)), were tested for stress corrosion cracking (SCC) resistance in a boiling acidified environment of NaCl. SCC results indicated a remarkably lower value of plateau crack growth rate (PCGR) and higher values of KISCC and JISCC for SS-2, which was attributed to the lower effective grain boundary energy resulting from a higher amount of copper in it. Cold working reduced KISCC and PCGR; while thermal aging and welding decreased KISCC and increased PCGR vis-à-vis the annealed material. 相似文献
11.
Sarvesh Pal 《Corrosion Science》2010,52(6):1985-1991
This paper discusses a new approach to determination of threshold stress intensity factor for stress corrosion cracking (KISCC) of stainless steel in 42% MgCl2 environment at 154 °C. KISCC of solution-annealed and sensitized AISI 304 stainless steel in chloride environment has been determined using circumferential notch tensile (CNT) technique. KISCC data generated using CNT technique have been compared with those generated using traditional techniques such as compact tension and double cantilever beam (reported in the literature). The results presented here validate the ability of CNT technique for determination of KISCC of sensitized as well as solution-annealed austenitic stainless steel. This paper also discusses the mechanistic aspects of the difference in fractographic features of the sensitized and solution-annealed stainless steel. 相似文献
12.
The stress corrosion cracking (SCC) behavior of Fe18Cr10Mn1Ni(0.3–0.8)N alloys was investigated in aqueous NaCl environment by using slow strain rate test method, and the results were compared to those of Ni-free counterparts. The addition of N tended to improve the SCC resistance of Fe18Cr10Mn- and Fe18Cr10Mn1Ni-based alloys. The alloying Ni magnified the beneficial effect of N on the SCC susceptibility and, eventually, the Fe18Cr10Mn0.8N alloy was immune to SCC in 2 M NaCl solution at 50 °C. The SCC behavior of the present alloys was found to be closely related to the repassivation tendency and the resistance to pitting corrosion. 相似文献
13.
The present investigation was undertaken to analyze the effects of isothermal ageing treatments, carried out between 700 and 900 °C for a variety of times up to two weeks and followed by water quenching, on the microstructure and on the localized corrosion resistance of a superduplex stainless steel, SAF 2507.The quantitative metallography coupled with X-ray diffraction techniques was adopted to follow the microstructural evolution, together with SEM microscopy.Electrochemical potentiodynamic tests, as cyclic polarization curves recorded in sodium chloride solutions, together with weight loss measurements were employed to evaluate the susceptibility of the aged specimens to pitting corrosion.The influence of the transformation of ferrite into secondary austenite and sigma phase and of other microstructural variations, as chromium nitrides precipitation, on the stability of the passive film is shown. The susceptibility of the aged alloy to pitting corrosion phenomena, is related to sigma phase precipitation in association to the secondary austenite formation, which lead to a noticeable Cr depletion at grain boundaries. 相似文献
14.
Acoustic emission (AE) signals generated by transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC) have been compared by means of slow strain rate tensile tests (SSRT) performed using both solubilised and sensitised type AISI 304 stainless steel in a 1 M NaCl + 1 M HCl solution. Results show that the AE activity during the propagation of TGSCC is much higher than the AE activity during the IGSCC propagation. However, no significant difference was found between the mean amplitude and rise-time of the AE signals registered during the propagation of TGSCC and those measured for IGSCC propagation. 相似文献
15.
To investigate the influence of local stress on initiation behavior of stress corrosion cracking (SCC) for sensitized Type 304 stainless steel, cracking process during constant load SCC test was monitored and recorded with an in situ crack observation system. The changes in number of cracks, sum of crack length and cracked area on the specimen surface with test time were identified from the cracking images analyzed by image processing. In the SCC tests, many cracks were initiated and coalesced on the surface, and the coalescence of cracks played an important role to primary crack growth. The influence of applied stress on crack initiation was different from that on crack growth. In addition, there was a difference between influences of stress on incubation period to crack initiation and crack initiation rate. Due to these differences, a stress of 0.8Sy was thought to cause relatively many cracks compared with 0.5Sy and 1.3Sy (Sy = 200 MPa). Through quantitative estimation of distribution in local stress around a crack by finite element analysis method, it was deduced that the crack initiation is influenced not only by bulk stress applied at the end of the body, but also by local stress formed around pre-existing cracks. According to pre-existing cracks, stress enhancement accelerates the crack growth, while the stress relaxation causes the suppression of new crack initiation. Based on the experiment and analysis results, three types of growth process were suggested, which are caused by propagation itself, by new crack initiation at vicinity of the crack tip, and by coalescence of approaching cracks. Then, it was concluded that, in order to predict/simulate the cracking behavior of this SCC system, the influence of local stress on the crack initiation should be taken into account. 相似文献
16.
Intergranular corrosion susceptibility in supermartensitic stainless steel weldments 总被引:2,自引:0,他引:2
The intergranular corrosion susceptibility in supermartensitic stainless steel (SMSS) weldments was investigated by the double loop – electrochemical potentiokinetic reactivation (DL-EPR) technique through the degree of sensitization (DOS). The results showed that the DOS decreased from the base metal (BM) to the weld metal (WM). The heat affected zone (HAZ) presented lower levels of DOS, despite of its complex precipitation mechanism along the HAZ length. Chromium carbide precipitate redissolution is likely to occur due to the attained temperature at certain regions of the HAZ during the electron beam welding (EBW). Scanning electron microscopy (SEM) images showed preferential oxidation sites in the BM microstructure. 相似文献
17.
Measurements of pitting corrosion by potentiodynamic method and also by acoustic emission technique were carried out simultaneously. Cumulative distribution function of pitting corrosion (CDFP) occurrence was determined based on the results of potentiodynamic measurements. Independently cumulative distribution function of acoustic events (CDFAE) was found. The correlation analysis of both distributions was also performed. The occurrence of pitting corrosion was checked by metallographic observation. The measurements proved that observable acoustic activity is an effect of hydrogen evolution inside the pits. The random character of acoustic events during polarization, statistical analysis and existence of pits are good confirmation. 相似文献
18.
Zhanpeng Lu Tetsuo Shoji Fanjiang Meng Yubing Qiu Tichun Dan He Xue 《Corrosion Science》2011,(1):247-262
The effects of electrode potential, stress intensity factor and loading history on stress corrosion cracking growth of a cold-rolled 316NG stainless steel in 288 °C pure water were investigated. Crack branching and intergranular stress corrosion cracking along random grain boundaries were observed by electron-back scattering diffraction. A strong dependence of crack growth rate on stress intensity factor is observed. A single-cycle overloading produced a retarded transient cracking growth period. The mild inhibiting effect of decreasing electrode potential on crack growth of cold-rolled 316NG SS is analyzed based on the interaction between crack tip mechanics and crack tip oxidation kinetics. 相似文献
19.
Acoustic emission (AE) during pitting corrosion of 304 stainless steel (304 SS) in H2SO4 solutions with different pH values and Cl− concentrations was studied. Two types of AE signals are detected in all solutions. Each type of signals is characterized by AE parameters (rise time, counts number, duration and amplitude) and waveform carefully. It is believed that the hydrogen bubbles evolution inside the pits is the AE source. 相似文献
20.
Rongguang Wang 《Corrosion Science》2008,50(2):325-328
The change of polarization curves and surface morphologies of SUS304 stainless steel was investigated in 3.5 mass% NaCl solution with or without the application of ultrasound (US). As the result, both the pitting corrosion and the crevice corrosion were largely suppressed by the application of US. The reason is attributed to the decrease in the concentration of hydrogen and chloride ions in pits or in the crevice by removing the corrosion product and stirring the liquid there. 相似文献