首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
304L and 316L steels were nitrided at 425 °C for 30 h and examined at various depths in 0.1 M Na2SO4 acidified to pH 3.0. In the near-surface region with about 7-14 wt% N, at potentials of active state anodic currents were much higher than those for untreated steels, whereas in deeper regions with <7 wt% N the currents were only slightly increased in comparison with untreated steels or they were even lower in passive and transpassive states. Surface films were composed of oxygen-containing species on top and of Cr-N species in deeper layers. It is suggested that strong corrosion of near-surface regions is associated with nitride precipitates. Beneficial effect of low nitrogen concentrations can be due to initially accelerated corrosion which leads to larger amounts of passivating species and to the accumulation of corrosion resistant chromium nitrides.  相似文献   

2.
Investigation of the influence of nitrogen on the pitting corrosion of high alloyed austenitic Cr‐Ni‐Mo‐steels (Part II) Austenitic stainless steel (18% Cr, 12% Ni, Mo gradation between 0,06 to 3,6%) had been solution nitrided. By step‐by‐step removing, the samples could be prepared with various surface contents of nitrogen from 0.04 to 0.42%. In two test series the influence of nitrogen had been determined. The susceptibility against pitting corrosion of these samples had been tested by the chronopotentiostatical method. For the investigated steel composition and the used corrosion system there is no infuence of molybdenum on the effectiveness of nitrogen. The effectiveness of nitrogen can be described by the factor 25 in the PRE. By the investigation of the surfaces with the XPS analysis, it could be shown that the passivation and the pit nucleation is influenced by nitrogen. In these ranges NOx, NHx, and NHz‐spectra have been detected. Bound Mo was found in steels containing molybdenum. It is assumed that the repassivation mechanisms of N and Mo work independently of each other. With the results efforts are supported to improve the pitting corrosion resistance also at molybdenum poor steels by surface nitriding or nitrogen alloying. The achieved results justify the assumption that the observed positive effect of the nitrogen may be extented to even higher nitrogen contents. A prerequisite for this is avoiding secondary phases in the matrix. The adverse influence of small particles is known well.  相似文献   

3.
Recent developments in ferritic stainless steels The pitting resistance of ferritic stainless steels in HCl is visibly improved by Mo, in particular in the case of vacuum-melted material. In this context the ratio Cr:Mo = 25:2 is superior ta Cr:Mo = 17:3; addition of Mo prevents, beyond that, crevice corrosion. Ti increases resistance in the Strauß test but not in the Huey test, while Nb turns out to have a positive effect in either test. Steels containing Cr: Mo = 17:l are certainly still susceptible to pitting, but no longer to stress corrosion cracking in boiling MgCl2, solution; stress corrosion cracking is not observed in 55% boiling Ca(NO3)2, and 25% boiling NaOH, but after annealing at 980 °C intercrystalline corrosion takes place. The test duration required for establishing cracking susceptibility is considerably shorter with ferritic than with austenitic steels (100 and 1000 to 2000 hours respectively).  相似文献   

4.
Pitting corrosion resistance of laser welds of AL-6XN superaustenitic stainless steel (SASS) was investigated in acidic chloride ion medium. It was found that the critical pitting temperature (CPT) of the laser welds increased with increasing welding speed or decreasing laser power. Pitting attack preferentially occurred at selective dendrite cores of the laser welds. Analytical electron microscope (AEM) microanalysis revealed that depletion of Mo at dendrite cores due to microsegregation is the basic cause for the pitting corrosion susceptibility. The higher partition coefficient kMo and Mo concentration at dendrite cores of laser welds were attributed to the lower heat input welding parameters.  相似文献   

5.
Additions of nickel to ferritic steels containing 25–28% Cr and 2–4% Mo increased the impact toguhness especially when more than 2% Ni was present. The effect of nickel content increased up to 4% Ni, the largest addition studied. Steels stabilized with niobium had lower transition temperatures then did corresponding steels stablizied with titanium. Steels containing 4% Ni required annealing at 1050 C to avoid intermetalic compounds. It was also noted that nickel reduced the upper shelf energy in the Charpy impact test and eliminated a sharp transition from ductile to brittle behaviour. No definite effect of nickel on pitting potential was pound but steels in the series 25Cr-3.5 Mo-Ni-Ti consistenly had more noble pitting potentials and greater resistance to crevice corrosion than the 28 Cr-2Mo-Ni-Ti steels. Nickel contents of 1 or 2% tended to improve crevice corrosion resistance while larger nickel contents were somewhat ditrimental. Nickel strongly reduced critical current densities for passivity both in l N H2SO4 and in l N HCL and yielded corresponding increases in resistance to corrosion by these acids. Although 1% Ni or more caused the annealed steels to be susceptible to stress corrosion cracking in MgCl2 boiling at 140 C, while the as-Welded steels containing 4% Ni did not crack in boiling 25% Nacl at pH 1.  相似文献   

6.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

7.
Investigation of the influence of nitrogen on the pitting corrosion of high alloyed austenitic Cr‐Ni‐Mo‐steels Austenitic stainless steels (18% Cr, 12% Ni, Mo gradation between 0.5 to 3.6%) had been gas‐nitrided. By stepwise removal, samples could be prepared with various surface content of nitrogen up to 0.45%. The susceptibility against pitting corrosion of these samples had been tested by two methods: – determination of the stable pitting potential in 0.5 M NaCl at 25°C – determination of the critical pitting temperature in artificial sea water (DIN 81249‐4) The influence of nitrogen to both determined parameter can be described well by PRE = Cr + 3,3 · Mo + 25 · N That means for the investigated steel composition and the used corrosion system there is no influence of molybdenum on the effectiveness of nitrogen.  相似文献   

8.
The effect of incorporated Mo and Nb on the electronic properties of oxide films formed on AISI 304L was investigated by Mott-Schottky analysis. The films show a bi-layer structure and behave as n-type and p-type semiconductors at potentials above and below the flat band potential. The inner p-type layer is Cr-enriched, while the outer n-type layer shows a slight increase in Fe-content close to the outer surface, where NbO3+-oxalate or MoO42− incorporation occurred. The observed enhancement of pitting corrosion resistance of anodized steels is most probably related to compositional changes and thickness increase of the film after the surface treatments.  相似文献   

9.
The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (Epit) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 °C and 520 °C. Under such experimental conditions the Epit-values shifted up to 1.25 V in the positive direction.  相似文献   

10.
To clarify the critical relative humidity (RH) to initiate pitting corrosion and the rusting mechanism in a marine atmospheric environment, pitting corrosion of Type 430 stainless steels under drops of MgCl2 solutions were investigated. A pitting corrosion test was performed at different relative humidities under droplets with various diameters and thicknesses. The probability of pitting decreased as the diameter and thickness decreased. Pitting progressed only when the chloride concentration exceeded 4 M, which is the equilibrium concentration at 80% RH. Accordingly, pitting of Type 430 could be initiated when the RH was less than 80%. Additionally, a pitting corrosion mechanism of Type 430 stainless steel under droplets containing chloride ions is proposed.  相似文献   

11.
This paper presents new data on the resistance of recently developed high-alloy stainless steels to localised corrosion in chloride solutions. Pitting potential was determined in artificial sea water, and critical pitting temperature CPT in very aggressive FeCl3 solution. Critical crevice corrosion temperature CCT was tested in the same FeCl3 solution. Stress corrosion measurements, made in a more familiar NaCl solution by the drop evaporation method, demonstrate that alloy stainless steels with high chromium and molybdenum have very long failure times, comparable with those of nickel alloys found to be SCC-resistant under practical conditions. Stainless steels of 20 Cr 25 Ni 6 Mo type showed the best resistance to localised corrosion.  相似文献   

12.
Vorwort     
Investigation into the pitting corrosion of passive austenitic CrNi steels in neutral chloride solutions Stainless steels of the 18/8 CrNi-Type suffer pitting corrosion by halogen ions. Potentiokinetic, galvanostatic and potentiostatic tests as well as the ferro-ferricyanide-tests showed that pitting susceptibility increases with Cl? content, temperature and oxygen content of the electrolyte, with decreasing homogeneity and purity of the material. Cold-working is without significant influence on the pitting potential. Mn up to 11,2% increases pitting potential by 50 mV, Ni up to 25% increases the potential by 200 mV, Cr up to 30 and Mo up to 4,6% increase the potential by max. 900 mV in 3% NaCl of pH 7,5 at 22° C. The four methods employed gave the same pitting potentials. Before arriving at the potential of stationary pitting all steels showed a region where formation and repassivation of single pits occur. Cathodic protection to suppress pitting causes H2-absorption. The amount of absorbed H2 increases as the potential becomes more negative. Hydrogen embrittlement was not observed. The absorbed H2 impairs pitting resistance. The study of Cl?-adsorption as a pitting releasing process by help of the potentiostatic method, working with a reference source of triangular alternating voltage gave no indication of a preferential Cl?-adsorption or an Cl?-adsorption-potential near the pitting potential.  相似文献   

13.
In the simulated heat affected zone of 2205 duplex stainless steels, effects of large welding heat inputs on the microstructure and corrosion behaviour were investigated. Reformed austenite content increased with the coarsening of grain boundary austenite (GBA) and the growth of intragranular austenite (IGA) and Widmanstatten austenite (WA), thus improving the low temperature toughness and affecting corrosion state. Reduction of chromium nitrides contributed to better resistance to pitting corrosion. Moreover, the pitting corrosion and intergranular corrosion were improved resulting from the formation of more GBA and WA. The specimen with a Δt8/5 of 100 s presents better comprehensive performance.  相似文献   

14.
Corrosion behaviour of three austenitic Lotus-type porous high nitrogen Ni-free stainless steels exposed to an acidic chloride solution has been investigated by electrochemical tests and weight loss measurements. Polarization resistance indicates that the corrosion rate of Lotus-type porous high nitrogen Ni-free stainless steels is an order of magnitude lower than that of Lotus-type porous 316L stainless steel in acidic environment. The localised corrosion resistance of the investigated high nitrogen Ni-free stainless steels, measured as pitting potential, Eb, also resulted to be higher than that of type 316L stainless steel. The influences of porous structure, surface finish and nitrogen addition on the corrosion behaviour were discussed.  相似文献   

15.
This paper describes the effects of temperature and hydrodynamics on the CO2 corrosion of two stainless steels in the presence of free acetic acid. The experimental set-up developed in this work was able to evaluate the corrosion behavior of 13Cr and 13Cr5Ni2Mo stainless steels in static conditions with a flow velocity of 1 m s−1 at temperatures of 125, 150 and 175 °C. Electrochemical tests of impedance and linear polarization resistance have been carried out, as well as mass loss tests and surface analysis.  相似文献   

16.
In harsh chloride bearing environments stainless steel reinforcing bars offer excellent corrosion resistance and very long service life for concrete structures, but the high costs limit a more widespread use. Manganese bearing nickel‐free stainless steels could be a cost‐effective alternative. Whereas the corrosion behavior of stainless steels in alkaline solutions, mortar and concrete is quite well established, only little information on the reasons for the high pitting resistance are available. This work reports the results of pitting potential measurements in solutions simulating alkaline and carbonated concrete on black steel, stainless steel DIN 1.4301, duplex steel DIN 1.4462, and nickel‐free stainless steel DIN 1.4456. Duplex and nickel‐free stainless steels are fully resistant even in 4 M NaCl solutions with pH 13 or higher, the lower grade DIN 1.4301 shows a wide scatter between fully resistant and pitting potentials as low as +0.2 V SCE. In carbonated solutions with pH 9 the nickel‐free DIN 1.4456 shows pitting corrosion at chloride concentrations ≥3 M. This ranking of the pitting resistance can be rationalized based on XPS surface analysis results: both the increase of the Cr(III)oxy‐hydroxide and Mo(VI) contents in the passive film and a marked nickel enrichment beneath the film improve the pitting resistance. The duplex DIN 1.4462 shows the highest pitting resistance, which can be attributed to the very high Cr(III)oxy‐hydroxide, to a medium Mo(VI) content in the film and to a nickel enrichment beneath the film. Upon time, the protective properties of the surface film improve. This beneficial effect of ageing (transformation of the passive film to a less Fe2+ containing, more hydrated film) will lead to higher pitting potentials. It can be concluded that short‐term solution experiments give conservative results in terms of resistance to chloride‐induced corrosion in reinforced concrete structures.  相似文献   

17.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

18.
Corrosion of unalloyed and low alloyed steels in carbonic acid solutions In long period experiments unalloyed steels were found to corrode in O2-free CO2-saturated 0,5 M sodium sulfate solutions at 25° C with flow independent corrosion rates of 0,05–0,1 mm/a. Cold-work at unalloyed steels as well as higher contents of phosphorus, copper and chromium in unalloyed and low alloyed steels increased the corrosion rate to 0,2 to 1,4 mm/a. In O2-free CO2-saturated distilled water unalloyed steel showed a decreased resistance affording corrosion rates of 0,4 mm/a. Traces of oxygen as introduced by CO2 containing 100 ppm O2 increased the corrosion rate only above pH 4,2. All investigated unalloyed and low alloyed steels showed pitting corrosion after long induction periods. The shortest induction periods were observed in O2-free CO2-saturated distilled water. Sulfate ions and traces of oxygen seem to inhibit pitting corrosion.  相似文献   

19.
It has long been accepted that manganese sulphide favours pitting on stainless steels. However, there are different standpoints on the most important mechanism for pit initiation; due to dissolution of sulphide inclusions, chromium depletion around the inclusion or mechanical rupture of the passive film by metal chlorides. Analysing the pitting potential and metastable pitting rates on different grades of stainless steels has rationalised the effect of sulphide content on pitting corrosion resistance. In situ atomic force microscopy (AFM) has been used in conjunction with conventional electrochemical techniques for imaging real time pit initiation events.  相似文献   

20.
Two experimental ELI ferritic stainless steels (22 Cr – 2.5 Ni – 3 Mo and 22 Cr – 2.5 Ni – 3 Mo – Ti) prepared in laboratory and a commercial one (21 Cr – 3 Mo – Ti) were investigated. Electrochemical and laboratory exposure tests were carried out to define the localized corrosion resistance (pitting and crevice) of such steels in chloride solution. Intergranular and stress corrosion resistance was also evaluated. Room temperature tension tests and impact tests were performed. 22 Cr – 2.5 Ni – 3 Mo – Ti and 21 Cr – 3 Mo – Ti steels are immune to intergranular corrosion whatever temperature they are heat treated at and have the same pitting corrosion resistance as a function of temperature; crevice corrosion of 22 Cr – 2.5 Ni – 3 Mo is decidely better than in the commercial 21 Cr – 3 Mo – Ti. The experimental steels were immune to stress corrosion in hot chloride environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号