首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Homogeneous and adherent polyaniline–montmorrilonite (MMT) nanocomposite coatings were electrosynthesized on aluminum (Al) alloy 3004 (AA 3004) by using the galvanostatic polarization method. The synthesized coatings were characterized by UV–Vis absorption spectrometry, Fourier transform infrared spectroscopy, X-ray diffraction patterns and scanning electron microscopy. The corrosion protection effect of the coatings was demonstrated by performing a series of electrochemical experiments of potentiodynamic and impedance measurements on Al in 3.5 wt% aqueous NaCl electrolytes. The corrosion current (icorr) values decreased from 6.55 μA cm−2 for uncoated Al to 0.102 μA cm−2 for nanocomposite-coated Al under optimal conditions.  相似文献   

2.
Zn–Mn alloy coatings were galvanostatically electrodeposited from an acidic chloride bath. Effects of deposition current density, pH and temperature on surface morphology, microstructure and corrosion resistance of Zn–Mn coatings were studied. The coatings deposited at 10, 50 and 100 mA cm?2 had a single η-Zn phase structure. However, a dual phase structure of η-Zn and ?-Zn–Mn with higher Mn content was found for the coatings deposited at 200 mA cm?2. The dual structure degraded the corrosion resistance of the coatings. The highest corrosion resistance was achieved for the Zn–Mn coating deposited at 100 mA cm?2, pH 4·9 and 25°C. This coating contained 4·1 wt-%Mn and showed a unique surface morphology consisting of randomly arranged packs of very thin platelets, laid perpendicular to the surface and provided a high compactness deficient free structure.  相似文献   

3.
The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Znacid) and a cyanide-free alkaline bath (Znalkaline)) and of Zn–Mn and Zn–Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn–Mn(432h) > Zn–Co(429h) > Znalkaline(298h) > Znacid(216h). The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn5(OH)8Cl2·H2O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn0.98O2, Mn5O8) in the Zn–Mn coating, and the formation of the hydroxide Zn2Co3(OH)10·2H2O in the Zn–Co coating, produced more compact and stable passive layers, with lower dissolution rates.  相似文献   

4.
Agar–KOH was used for the Zn-powder binder at different concentrations in order to achieve the desired conductivity and physical properties. The presence of KOH causes the growth of a ZnO needle structure that covers the Zn-active materials. The formation of ZnO is proven by microscopy and structural measurements. To further understand the effect of KOH in the agar binder, Zn–air batteries are fabricated. The results show that the Zn–agar binder without KOH gives the highest discharge capacity of 505.0 mA h g−1. The results contradict earlier expectations that a ‘small’ amount of KOH in agar could increase the battery’s capacity.  相似文献   

5.
The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM).The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO2-free bath.  相似文献   

6.
The corrosion behaviour of Al–Zn–In sacrificial anodes has been investigated in a sodium chloride solution containing CeCl3. Scanning electron microscopy, energy-dispersive X-ray analysis, and inductively coupled plasma mass spectrometry have been employed to gain knowledge of the micro-morphology and corrosion process of the Al alloy. Cerium, both as the alloy element and as the additive in the NaCl solution, improves the electrochemical properties of the Al–Zn–In alloy. The activation of Ce in the Al–Zn–In alloy in the NaCl solution has been studied.  相似文献   

7.
In the frame of the Accelerator Driven System (ADS) cooled by liquid lead–bismuth eutectic (LBE), the austenitic stainless steel 316L is considered as a possible structural material for the reactor. However, the corrosion of 316L in this liquid alloy environment can be substantial, especially when a dissolution process occurs. In order to understand the dissolution process and to obtain a modelling of the 316L corrosion rate by LBE, an experimental dissolution kinetics of 316L is carried out in stagnant LBE at 500 °C up to 3000 h. A Ni preferential dissolution of the 316L is observed, leading to the formation of a ferritic layer at the 316L surface. A discussion on the various steps occurring in dissolution process leads to the conclusion that only the Ni dissolution reaction rate can control the 316L dissolution kinetics. The dissolution reaction rate constant, kd, calculated from this study experimental points is equal to 4.2 × 10−11 mol cm−2 s−1.  相似文献   

8.
To enhance the mechanical properties of TiN coating on magnesium alloy, metal vapor vacuum arc (MEVVA) ion implantation was performed to modify magnesium alloy substrate before TiN film deposition. Implantation energy was fixed at 45 keV and dose was at 9 × 1017 cm− 2. TiN coatings were deposited by magnetically filtered vacuum-arc plasma source on unimplanted and implanted substrate. The microstructure composition distribution and phase structure were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical states of some typical elements of the TiN coating were analyzed by means of X-ray photoelectron spectroscopy (XPS). The properties of corrosion resistance of TiN coatings were studied by CS300P electrochemical-corrosion workstation, and the mechanism of the corrosion resistance was also discussed.  相似文献   

9.
Electrodeposition of Zn–Ni coatings performed in acidic baths are not suitable for high strength steels due to their high susceptibility to hydrogen embrittlement.In this work, Zn–Ni coatings were deposited on a high strength steel (4340) upon stirring conditions from an alkaline bath. A complete characterisation of the coatings (corrosion, morphology and composition) has been accomplished, correlating the electrodeposition conditions with these features. The best protective properties of the grown coatings were achieved for the alloys with a single phase structure of γ-Ni5Zn21 and a denser morphology. Additionally, the hydrogen content incorporated is lower than even cadmium-coated 4340 steel which has undergone a postbaking dehydrogenation treatment.  相似文献   

10.
Corrosion and passivation behaviour of Mg-based alloy AZ91D was investigated in aqueous sodium borate solutions (pH 9.2) in relation to some test parameters, using electrochemical techniques. Increasing borate concentration (0.01–0.10 M) or temperature up to 298 K leads to increase the corrosion rate of the alloy. However, at temperatures higher than 298 K borate anions have stronger propensity to passivate the alloy, thereby decreases its corrosion rate. For a fixed borate concentration increasing Cl addition is correlated with a more negative corrosion potential and a higher corrosion rate, as well as increase the vulnerability of the anodic passive film for breakdown. The influence of oxidizing potentials over the range −1.5 V to 2.75 V (SCE) on the performance of the alloy in the most aggressive borate solution (0.10 M) reveals that higher potentials, induces better passivation due to formation of a rather thick and more protective n-type semiconducting film. A modified Randles circuit including Warburg impedance to account for the diffusion of reactants or products through the surface film was adopted to analyse the EIS data, that gave impedance parameters in good agreement with the results of open circuit potential and dc polarization measurements.  相似文献   

11.
Electrochemical techniques including open circuit potential measurement, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion and passivation behaviour of Ti–6Al–4V alloy in sodium azide (NaN3) solutions compared to the behaviour of its pure base metal Ti. The results showed that increasing azide concentration increases the rate of corrosion (icorr) and shifts negatively the rest potential (Ef), as well as decreases the spontaneous thickening rates of the inner and outer layers constituting the passive oxide film on each sample. These effects are more accentuated for the alloy than for the metal. Moreover, the electrical resistance (Rox) and the relative thickness (1/Cox) of the oxide films on the two samples exhibit an almost linear decrease vs. NaN3 concentration. The results suggested that addition of Al and V to Ti, although improves its machinability, yet it decreases the performance of its surface oxide film to protect the degradation of the metal. The alloy was found to be more susceptible to corrosion than its base metal, since Ti expresses higher apparent activation energy (Ea) for the corrosion process than Ti–6Al–4V. Electrochemical behaviour of Ti in azide medium was also compared with that in various halide solutions. It was found that Ti has a stronger propensity to form spontaneous passivating oxide layers in bromide more than in azide and other halide media, where the positive shift in the value of Ef and the simultaneous increase in the oxide film resistance (Rox) follow the sequence: Br > > Cl > I > F.  相似文献   

12.
The influence of Si on the corrosion behaviour of Al–5Zn–0.03In–1Mg–0.05Ti (wt.%) alloy was investigated by the microstructure observation and electrochemical measurements in order to improve its corrosion non-uniform and electrochemical properties. The main precipitates in Al–5Zn–0.03In–1Mg–0.05Ti–0.1Si (wt.%) alloy is Mg2Si phase, which decrease the galvanic corrosion because the potential difference between Mg2Si and a-Al is smaller than that between MgZn2 and a-Al. The addition of Si improves the corrosion uniformity of the anode due to the fine equiaxed grains and grain boundaries where Mg2Si particles uniformly distributed. The results indicate that the microstructure, electrochemical characteristics and corrosion uniformity can be improved significantly after adding 0.1 wt.% Si into Al–5Zn–0.03In–1Mg–0.05Ti (wt.%) alloy.  相似文献   

13.
A systematic study of the isothermal corrosion testing and microscopic examination of Fe3Al alloy in liquid zinc containing small amounts of aluminum (less than 0.2 wt.%) at 450 °C was carried out in this work. The results showed the corrosion of Fe3Al alloy in molten zinc was controlled by the dissolution mechanism. The alloy exhibited a regular corrosion layer, constituted of small metallic particles (diameter: 2-5 μm) separated by channels filled with liquid zinc, which represented a porosity of about 29%. The XRD result of the corrosion layer formed at the interface confirmed the presence of Zn and FeZn6.67. The corrosion rate of Fe3Al alloy in molten zinc was calculated to be approximately 1.5 × 10−7 g cm−2 s−1. Three steps could occur in the whole process: the superficial dissolution of metallic Cr in the corrosion layer, the new phase formation of FeZn6.67 and the diffusion of the dissolved species in the channels of the corrosion layer.  相似文献   

14.
Lanthanum-based conversion coating on Mg–Li alloy has been prepared by a microwave-assisted method. X-ray diffractions (XRD) indicate that the intermetallic compounds of lanthanum are formed on Mg–Li alloy surface. Scanning electron microscopy (SEM) images show that the coating has different morphologies and special structures. The corrosion resistance was assessed by means of potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The results indicate that this coating significantly reduces the corrosion rate of Mg–Li alloy in NaCl solution. A comparing experiment indicates that the coating prepared by microwave-assisted process has superior corrosion resistance to the coating obtained at room temperature.  相似文献   

15.
This paper reports a successful electrodeposition method for coating hydroxyapatite (HAP) onto surgical grade stainless steel (SS). Pure HAP coatings could be achieved at −1400 mV vs SCE and the coating resistivity was assessed by potentiodynamic polarization and impedance techniques which showed that HAP coatings deposited onto the borate passivated-SS specimens possess maximum bioresistivity in Ringer’s solution. The coatings were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The results have showed that the borate passivation followed by HAP coating performed on 316L SS could enhance the longevity of the alloy in Ringer’s solution.  相似文献   

16.
Here we report a novel approach of hot-pressing, adapted to assembly ZSM-5 (Zeolite Socony Mobile-Five) coatings on Mg–Li alloy. X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images show that ZSM-5 coatings are uniform and compact. The ZSM-5 exhibits a pure MFI structure. The corrosion behaviors of Mg–Li alloy and ZSM-5 coatings are investigated by electrochemical and immersion tests. The results indicate that ZSM-5 coatings improved the corrosion resistance of Mg–Li alloy, which is related to templates blocking the pores of ZSM-5. The concept of hot-pressing introduced here may be helpful to assemble uniform coatings on other substrates.  相似文献   

17.
Al-Mn coatings with different contents (0-41 at.%) were deposited on glass slides by magnetron co-sputtering. These coatings were characterised, before and after immersion tests, by X-ray diffraction, scanning electron microscopy (SEM) and electron probe microanalysis. The electrochemical measurements in a neutral saline solution showed that the pitting corrosion resistance of Al-Mn coatings increased with increasing Mn content as the pitting corrosion potentials are progressively shifted towards positive values. The immersion tests reveal that for all Mn contents, Al-Mn coatings keep a sacrificial character compared with steel. For Mn content above 26 at.%, XRD analysis showed the formation of an amorphous phase. This structure would be responsible for the high increase of the hardness of Al-Mn coatings and of the stabilisation of their open circuit potentials during the 48 h immersion tests.  相似文献   

18.
This study investigates the formation of a chromate conversion coating at Al–Cu–Fe–Mn intermetallic sites of an Al2219 alloy and the corrosion initiation at these sites in a 3.5% NaCl solution, using SEM, AES and EDX. Changes in the surface chemistry were monitored after progressive exposures to the solution up to 42 h. The coating was found to be thinner and more defective on the intermetallic. Initially, Al is dissolved and Al(OH)3 deposited on and around the intermetallic. After 42 h of exposure, Al(OH)3, Fe and Mn oxides and small particles of elemental Cu are deposited as corrosion products.  相似文献   

19.
The electrochemical behaviour of Cu-40Zn alloy, in 3% NaCl medium pure and polluted by 2 ppm of S2− ions, has been studied in the absence and presence of the 3-amino-1,2,4 triazole (ATA) as corrosion inhibitor. Electrochemical measurements (polarisation curves and electrochemical impedance spectroscopy) showed that sulphides accelerate the alloy corrosion. The studies revealed that ATA inhibits both cathodic and anodic reactions, indicating a mixed type of inhibition. The inhibiting effect was higher in presence of S2− ions than in its absence. Scanning electron microscopy analysis showed that the inhibitor acts by preventing the adsorption of S2− ions, and formation of Cu2S at the alloy surface. The inhibition efficiency reaches 98% at a concentration of 5 × 10−3 M.  相似文献   

20.
Titanium dioxide (TiO2) films have been deposited onto stainless steel substrates using atomic layer deposition (ALD) technique. Composition analysis shows that the films shield the substrates entirely. The TiO2 films are amorphous in structure as characterized by X-ray diffraction. The electrochemical measurements show that the equilibrium corrosion potential positively shifts from − 0.96 eV for bare stainless steel to − 0.63 eV for TiO2 coated stainless steel, and the corrosion current density decreases from 7.0 × 10− 7 A/cm2 to 6.3 × 10− 8 A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the TiO2 films provide good protection for stainless steel against corrosion in sodium chloride solution. The above results indicate that TiO2 films deposited by ALD are effective in protecting stainless steel from corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号