首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The dissolution process of a galvannealed coating layer on dual-phase steel was examined by correlating a stripping test, metallographic observations and a polarisation test in an acidified chloride solution. The galvannealed coating layer was composed of several Fe–Zn intermetallic phases, namely the gamma, delta, and zeta phases, from the substrate. The dissolution began from the outermost zeta phase and proceeded to the gamma and then the delta phase. The dissolution rates for each intermetallic phase and galvanic couples were measured and estimated through a polarisation test, and the gamma phase in the gamma-substrate galvanic couple exhibited the highest corrosion rate.  相似文献   

2.
Aluminium-zinc alloy sacrificial anodes are extensively used for cathodic protection. The performance of the sacrificial anodes can be significantly improved by incorporation of microalloying elements in the aluminium matrix. In the present work nano cerium oxide particles of different concentrations, ranging from 0 to 1 wt% were incorporated for activating and improving the performance of the anode. The electrochemical test results revealed the increased efficiency of the anode. The electrochemical impedance spectroscopy revealed the information that the presence of nano cerium oxide in the anode matrix caused effective destruction of the passive alumina film, which facilitated enhancement of galvanic performance of the anode. Moreover, the biocidal activity of cerium oxide prevented the bio accumulation considerably which enables the anodes to be used in aggressive marine conditions.  相似文献   

3.
The corrosion fatigue behaviour of a hot-dip galvanised ferritic pearlitic steel and of a hot-dip galvanised Ti-alloyed high-strength interstitial free steel was investigated. The testing mode was constant displacement, fully reversed plane bending. Both materials were tested as received and 10% uniaxially pre-strained. The effect of pre-straining on the zinc coating was investigated using polarisation resistance measurements and the scanning reference electrode technique (SRET). It was found that pre-straining is detrimental to the corrosion fatigue behaviour of both steels, due to damage to the zinc coating, leading to increased localised corrosion and in general higher corrosion rates.  相似文献   

4.
The reactivity of zinc under synthetic zinc patinas and the galvanic coupling in steel/patina/Zn are studied. Zn5(OH)6(CO3)2 and Na2Zn3(CO3)4⋅3H2O inhibit zinc anodic dissolution in NaCl, while Zn5(OH)8Cl2 H2O and Zn4(OH)6SO4 nH2O do not. The galvanic current in steel/patina/NaCl/Zn is smaller as compared to steel/NaCl/Zn. The inhibiting effect decreases with time for Na2Zn3(CO3)4⋅3H2O or Zn4(OH)6SO4 nH2O due to the transformation into Zn(OH)2. In NaHCO3, the polarity between zinc and steel can reverse. The effect of confinement on the cathodic current is stronger than the initial effect of patina which is explained by the instability of the patinas under rapid pH-increase.  相似文献   

5.
An investigation was carried out into the galvanic corrosion of magnesium alloy AZ91D in contact with zinc, aluminium alloy A380 and 4150 steel. Specially designed test panels were used to measure galvanic currents under salt spray conditions. It was found that the distributions of the galvanic current densities on AZ91D and on the cathodes were different. An insulating spacer between the AZ91D anode and the cathodes could not eliminate galvanic corrosion. Steel was the worst cathode and aluminium the least aggressive to AZ91D. Corrosion products from the anode and cathodes appeared to be able to affect the galvanic corrosion process through an “alkalisation”, “passivation”, “poisoning” effect or “shortcut” effect.  相似文献   

6.
Corrosion of steel embedded in concrete structures and bridges is prevented using cathodic protection. Majority of the structures protected employ impressed current system. Use of sacrificial system for the protection of steel in concrete is not as widely employed. The use of magnesium anodes for the above purpose is very limited. This study has been carried out with a view to analyse the use of magnesium alloy anode for the cathodic protection of steel embedded in concrete.Magnesium alloy anode, designed for three years life, was installed at the center of reinforced concrete slab, containing 3.5% sodium chloride with respect to weight of cement, for cathodic protection. Potential of the embedded steel and the current flowing between the anode and the steel were monitored, plotted and analyzed. Chloride concentration of concrete at different locations, for different timings, were also determined and analyzed.The magnesium anode was found to shift the potential of the steel to more negative potentials initially, at all distances and later towards less negative potentials. The chloride concentration was found to decrease at all the locations with increase in time. The mechanism of cathodic protection with the sacrificial anode could be correlated to the removal of corrosive ions such as chloride from the vicinity of steel.  相似文献   

7.
Galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution was tentatively evaluated with a newly developed multi-channel electrode technique in which the welded specimen was divided into nine working electrodes (WEs), reconstructed in resin, and connected individually to an imaginary ground level of an electric circuit via relay switches. This allows the WEs to join a galvanic couple and simultaneous measurement of participating current or open circuit potential of each WE. WEs were immersed together in 5.1 × 102 mol dm−3 or 2.1 × 10−4 mol dm−3 NaCl solutions, and spatial distribution of participating currents and open circuit potentials were monitored as a function of immersion time. The WE of the weldment acted as a cathode throughout the immersion period, while the other WEs of base steel became anodes or cathodes depending on their location, immersion time and concentration of the electrolyte solution. The ability of zinc-rich paint to protect the welded specimen as sacrificial anode was also investigated.  相似文献   

8.
4-Carboxyphenylboronic acid (CPBA) has been found to be an efficient carbon dioxide (CO2) corrosion inhibitor for steel in aqueous media. The results indicate that the addition of CPBA to CO2 containing sodium chloride solutions at a low concentration is able to retard corrosion anodic reactions, reduce corrosion current densities, increase charge transfer and total resistances, resulting in more uniform and smoother steel surfaces. These effects are attributed to the formation of a barrier layer on steel surface, which provides metal surface protection. The inhibitor was also found to mitigate corrosion by promoting random distribution of minor anodes.  相似文献   

9.
The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Experimental results from previous laboratory tests showed that the throwing power of cathodic prevention is higher compared to that of cathodic protection [1]. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, FEM numerical simulations of potential distribution were carried out. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, geometry of the pile and of sacrificial anodes, concrete resistivity. The results allowed to discuss the role of different factors on the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile.  相似文献   

10.
In this study, the effect of Fe-Zn alloy layer that is formed during galvanizing process on the corrosion behavior of galvanized steel has been investigated. The galvanostatic dissolution of galvanized steel was carried out in 0.5 M NaCl solution to obtain the Fe-Zn alloy layer on the base steel. The alloy layer was characterized to be composed of FeZn13, FeZn7 and Fe3Zn10 intermetallic phases, which constitute the zeta, delta1 and gamma layers of galvanized steel, respectively. It was observed that the alloy layer has similar cathodic polarization behavior but different anodic polarization behavior compared to galvanized steel. The anodic current plateau of alloy layer was up to 100 times lower than that of galvanized coating. Corrosion test performed in wet-dry cyclic condition has shown that the alloy layer has lower corrosion rate as compared to galvanized steel. From the results of corrosion test of alloy layer and base steel, it was concluded that Zn2+ has positive effect on the protectiveness of the zinc corrosion products. The measurement of surface potential over the alloy/steel galvanic couple has confirmed the galvanic ability of alloy layer to protect both the alloy layer itself and the base iron during initial stage of atmospheric corrosion.  相似文献   

11.
Z.Q. Tan 《Corrosion Science》2008,50(9):2512-2522
The present work was aimed at determining the effect of coating surface condition on the initial corrosion of hot-dip galvanized reinforcing steel bar (HDG rebar) in ordinary Portland cement (OPC) concrete. During zinc corrosion in OPC concrete, calcium hydroxyzincate (CHZ) formed on untreated HDG steel provided sufficient protection against corrosion. Therefore, it is concluded that treating HDG rebar with dilute chromic acid is unnecessary as a method of passivating zinc. A layer of zinc oxide and zinc carbonate formed, through weathering, on HDG bars increased the initial corrosion rate and passivation time compared with the non-weathered rebar exposed to concrete. HDG steel with an alloyed coating, i.e. containing only of Fe-Zn intermetallic phases, required a longer time to passivate than those with a pure zinc surface layer. The lower zinc content of the surface limited the rate of CHZ formation; hence, delayed passivation. Regardless of the surface condition, the coating depth loss after two days of embedment in ordinary Portland cement concrete was insignificant.  相似文献   

12.
Stress corrosion cracking behaviour of API-5L-X52 steel under cathodic protection in near-neutral and high pH conditions was studied using slow strain rate test method and electrochemical measurements. The slow strain rate test showed ductile and brittle fracture feature at low and high applied potentials, respectively. In order to identify the mechanism contributes in stress corrosion cracking; the electrochemical potentiodynamic polarisation test was done at fast and slow sweep rate. The results revealed that at near-neutral pH condition the anodic dissolution at crack tip was the dominant mechanism. While at high pH medium, the hydrogen based mechanism was dominant.  相似文献   

13.
In the companion paper [Z.T. Chang, B. Cherry, M. Marosszeky, Polarisation behaviour of steel bar samples in concrete in seawater, Part 1: Experimental measurement of polarisation curves of steel in concrete, Corrosion Science 50(2) (2008) 357-364], influences of the experimental procedure on measured polarisation curves of steel in concrete in seawater were investigated. It was found that an undistorted full polarisation curve of a steel sample in concrete can be obtained by the two-test procedure to conduct separate anodic and cathodic polarisation tests and combine the two partial curves into one curve. However, polarisation curves of steel samples in concrete in seawater were found not to fit with the theoretical curves based on the kinetics of charge transfer reactions. This was considered to be due in the main to the influence of a passive film on the steel surface in concrete. This paper proposes an empirical model for the polarisation behaviour of steel in concrete based on the assumption of two major electrochemical processes taking place at the interfaces of steel/passive-film/concrete: one is the active corrosion process and the other is the passive film growth or dissolution process. Typical curve-fit results are presented using the proposed model to simulate the polarisation behaviour and to evaluate the corrosion rate and Tafel parameters of three types of steel corrosion in seawater: steel bars in concrete, new steel bars and corroded steel bars.  相似文献   

14.
The corrosion susceptibility of as-received reinforcing steel bars (rebars) in solutions simulating the pore liquid of alkaline and carbonated concrete has been studied by means of potentiodynamic polarisation tests and polarisation resistance measurements. The effect of different degrees of carbonation and the presence of several chloride contents in the simulated pore solutions was investigated. Results show the beneficial effect of high alkalinity on the localised corrosion of steel caused by chloride ions. From the results of the potentiodynamic tests a critical chloride concentration above which pitting could take place was evaluated for each solution. The chloride threshold values here found are of the same order than those previously reported in the literature for film-free steel. The results obtained in solutions simulating carbonated concrete showed that under weak carbonation conditions carbon steel does not passivate while in the presence of high levels of carbonate and bicarbonate the resistance to localised corrosion is improved.  相似文献   

15.
Using a simple electrolytic cell, the pitting corrosion current of reinforcing steel is measured in Ca(OH)2 solutions in presence of chloride and sulfate as aggressive ions. Pitting corrosion current starts to flow after an induction period which depends on the concentration of both the aggressive and the passivating anions. The pitting corrosion current densities reach steady-state values which depend also on the type and concentration of the corrosive and passivating anions. The corrosive action of the aggressive species decreased in the order: SO42− > Cl. Corrosion of the steel is found to be governed by a single electron transfer reaction. Raising the temperature decreases the induction period associated with pit initiation and increases the corrosion current associated with pit propagation. From Arrhenius plots, the activation energies for both pit initiation and pit propagation in presence of chloride and sulfate ions are calculated.  相似文献   

16.
We applied shadowgraphy and Mach-Zehnder interferometry to investigate concentration field of Zn2+ above a Zn/steel couple in 0.01 M NaCl. During galvanic corrosion, the marked changes in the concentration of Zn2+ were visualized in a thin solution layer less than 0.5 mm thick above zinc. The concentration profile of Zn2+ was also obtained by analyzing the deflection of interference fringes. The obtained concentration profile was in good agreement with that obtained by our group with a scanning probe technique. The formation of zinc corrosion products was also visualized, which occurring on the steel surface a certain distance away from zinc.  相似文献   

17.
A localized electrochemical impedance spectroscopy (LEIS) technique was used to characterize in situ the micro-electrochemical activity of inclusions contained in an American Petroleum Institute (API) X100 steel in a near-neutral pH solution. It is found that there exists an electrochemical heterogeneity between inclusions and the adjacent steel matrix. Consequently, a galvanic couple is formed to result in the locally preferential dissolution. The local electrochemical activity of the inclusion depends on its composition. A Si-enriched inclusion is associated with a high electrochemical activity, and the preferential dissolution of the inclusion generates a local microvoid, whose further dissolution initiates a corrosion pit. An aluminum oxide-enriched inclusion is more stable than the adjacent steel matrix. The preferential dissolution would occur on the steel, causing the “drop-off” of the inclusion and generating a corrosion pit.  相似文献   

18.
In this paper, a sacrificial anode cathodic protection problem of 2D steel storage tank was simulated using boundary element method. The tank was protected by a zinc anode located directly on structure wall. Data obtained from potentiodynamic measurements were used as boundary condition. In this study, optimum location of the anode was determined, and the influence of anode length and paint defect on the level of protection provided by system were investigated. This study showed that boundary element method is beneficial in modeling and analyzing cathodic protection systems and calculated results were consistent with expectations from the basic corrosion concepts.  相似文献   

19.
A time-dependent finite element model was developed to simulate the corrosion of zinc and aluminum coatings, galvanically coupled to a mild steel substrate in deaerated 0.01 M H2SO4 electrolyte. The simulations of galvanic corrosion for each of the coatings were compared to experimental measurements of open circuit potential, and changes in coating geometry measured via surface profilometry. Good agreement between the model predictions and corrosion tests were observed initially for both coatings. However, in the case of the zinc coating, divergence was observed between the simulation and the corrosion test after approximately 40 min, due to a decrease in the reactivity of the zinc surface.  相似文献   

20.
The behaviour of imidazoline and an acid functionalised resorcinarene as steel corrosion inhibitors in carbon dioxide (CO2)-saturated brine solutions has been studied using an electrochemically integrated multi-electrode array namely the wire beam electrode (WBE). Both imidazoline and resorcinarene acid provided excellent inhibition to general CO2 corrosion; however imidazoline was found to aggravate localised corrosion by creating a small number of major anodes that focused on a small area of the WBE surface, leading to highly concentrated anodic dissolution. The resorcinarene acid showed distinctively different behaviour by generating a large number of minor anodes randomly distributing over the WBE surface, leading to insignificant general anodic dissolution. These results indicate that resorcinarene acid provided effective localised corrosion inhibition by promoting a random distribution of insignificant anodic currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号