首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
极性反转时典型油纸复合绝缘的电场特性   总被引:3,自引:0,他引:3  
极性反转是换流变压器一种特殊的工作状态,因极性反转时空间电荷的作用,绝缘油中会出现极高的危险场强。文中采用ANSYS10.0有限元仿真软件计算了极性反转时板-板、同轴、棒-板及换流变压器阀侧绕组端部局部模型等几种典型油纸复合绝缘电场的场强,绘制了绝缘油及绝缘纸板中最大场强与绝缘纸板厚度、油纸电导比、极性反转时间等参数的关系曲线。在板-板油纸复合绝缘中,增加绝缘纸板的厚度可以降低极性反转时油中及纸中场强。但在同轴油纸复合绝缘中,当绝缘厚度超过一定值后,纸中极性反转场强反而增加。在棒-板油纸复合绝缘中,极性反转场强与绝缘纸板的尺寸及位置关系具有较大的不确定性。延长极性反转时间可降低极性反转时的场强。极性反转场强随油纸电导比增加而增加,且存在饱和现象。  相似文献   

2.
非线性油纸复合绝缘结构中交直流混合电场的数值计算   总被引:6,自引:0,他引:6  
吕晓德  陈世坤 《变压器》1997,34(1):20-23
分析了换流变压器端部电场的分布特性。首先从能量的角度获得直流电场的有限元计算模型;然后针对材料的非线性特征,用迭代法进行求解,并给出了合理的收敛判据和收敛因子;最后计算分析了各种励磁下电场的分布特征以及场域温度,油纸电导率之比的变化对电场分布的影响。  相似文献   

3.
换流变压器油纸绝缘材料的电导率受电场强度与温度的影响呈非线性变化。为研究材料非线性对换流变压器极性反转电场分布的影响,对油纸绝缘电导率的非线性变化规律进行了数值拟合,利用RC等效电路进行了计算与分析,并运用Elec Net有限元软件对一台±400 k V换流变压器网侧和阀侧绕组端部电场进行了仿真。计算与仿真结果表明非线性材料极性反转完成时油中最大电场强度为线性材料的78%,但稳态时油中电场强度是线性情况下的36倍。电导率的电场强度非线性会均化由温度梯度带来的电场梯度。最后根据计算与仿真结果提出绝缘的改进方向。  相似文献   

4.
极性反转是换流变压器出线结构复合绝缘的一种特殊工作状态,极性反转时由于空间电荷作用可导致绝缘介质内部及界面处电场畸变。另一方面,绝缘介质电性能参数是温度的函数,因此温度梯度导致的电性能参数改变同样会影响绝缘结构在极性反转过程中的瞬态电场分布。基于此,为了较准确地模拟复合绝缘结构在考虑温度分布条件下的极性反转瞬态电场,提出应用非线性有限元法对以上2种瞬态电场影响因素进行耦合分析。首先研究了油浸纸复合绝缘体系电性能参数与温度的关系;然后详细介绍了基于非线性有限元法的瞬态电场计算流程,并通过双层同轴复合绝缘结构模型验证了其有效性;最后对实际换流变压器出线装置的油纸-环氧浸渍典型复合绝缘结构建立了二维轴对称仿真计算模型,在考虑材料非线性的条件下对其极性反转瞬态电场变化过程进行了仿真分析。计算结果表明传统模拟方法与考虑材料非线性时的结果存在较大差异,且极性反转过程中复合绝缘结构易出现畸变严重的局部高场强区。  相似文献   

5.
为研究油纸复合绝缘在复合电场下的击穿特性,以典型油-纸绝缘结构为主要研究对象,首先通过试验方法得到了典型油-纸绝缘在复合电场下的击穿特性;又根据等效电路模型得到仿真边界条件,对变压器油和绝缘纸板中的电场分布进行了仿真分析;然后,分别对变压器油和浸油纸板的击穿特性进行了测试。根据两种介质中电场的数学表达式,得到了电场E和交流百分含量η之间的关系,并将其电场分布图像与油、纸板的击穿场强进行了比对和分析,总结出油纸复合绝缘击穿电压随交流含量变化的数学表达式。据此,提出随交流含量变化两种介质中的电场强度改变和各自介电强度的差别是导致整体击穿电压呈现先升后降趋势的主要原因。  相似文献   

6.
换流变压器油纸绝缘在极性反转电压试验时经常出现故障。为查找故障原因,利用RC模型分析了油纸复合绝缘的极性反转特性,设计了三电极试验模型和极性反转电压试验装置,在不同反转方式下对油纸复合绝缘平均电流和击穿电压特性进行了试验研究。试验结果与解析结果的对比表明:剩余电流与施加电压成线性比例关系;吸收电流初始值随施加电压升高成指数规律增长,衰减函数是以时间的幂函数为变量的指数函数,这些与RC模型确定的规律不同;击穿电压随极性反转速度增加明显下降;集聚的电荷量也随施加电压升高成指数规律增长。由以上结果可知:吸收电流变化规律的差异起因于空间电荷形成的内电场强度与极性的变化,极性反转引起油纸复合绝缘容易击穿的原因是浸油纸板中电场的快速增加。  相似文献   

7.
变压器油纸绝缘系统中的空间电荷现象   总被引:3,自引:2,他引:1  
特高压直流输电技术的发展对换流变压器绝缘系统的性能及安全稳定运行提出越来越高的要求,而空间电荷问题是影响和制约变压器油纸绝缘材料耐电强度,导致其老化和破坏的重要因素.针对换流变压器开展在交直流复合、极性反转等复杂电场作用下的空间电荷相关机理和试验研究具有重要的理论价值,而且对工程实际中的绝缘结构设计、材料制备与生产工艺亦具有指导意义.为此,针对近年来国内外油纸绝缘领域中有关空间电荷方面的研究成果和进展予以阐述和评价.在变压器油流注放电发展过程的数值仿真方面、国外学者通过数学、物理模型的建立,得到了随时间快速推移的场强与电荷浓度波峰、这是变压器油中流注发展的标志性现象.在电声脉冲法测量空间电荷方面,国内学者通过不同场强、湿度和老化程度下油纸绝缘介质中的空间特性,确定了载流子的类型、迁移率、陷阱深度、并引入量子化学方法计算得到油纸介质的分子能态密度、这是今后对微观与介观深入研究的重要方向.在复合电场条件下非线性与各向异性电场与空间电荷仿真方面、现有计算方法较为成熟.如何建市更为准确、完整的模型以得到更为符合实际的结果、则是今后的发展方向.  相似文献   

8.
换流变压器阀侧绝缘电场特性研究   总被引:8,自引:6,他引:8  
采用Matlab软件仿真分析换流变压器阀侧绕组端部电场的励磁电压类别后建立了电容系数和电导率复合介质电场的数学模型,并对其复合绝缘结构建模,用有限元分析法分析计算各种励磁电压作用下的电场分布,得出了换流变压器阀侧绕组端部电场的复杂特性,为换流变压器阀侧绕组端部的安全绝缘设计提供了科学依据。  相似文献   

9.
极性反转电压下油纸绝缘系统中电场分布   总被引:2,自引:0,他引:2  
针对极性反转电压下油纸绝缘系统电场分布特点,分析油纸绝缘界面空间电荷积聚条件.建立油纸复合绝缘结构模型,利用有限元分析法计算不同参数极性反转电压下的电场分布.结果表明:在油纸绝缘系统中,如果油和纸的电容率之比与电导率之比相等,则在反转后瞬间就进入稳态,电场没有发生畸变;如果油和纸的电容率之比与电导率之比不相等,则在反转后瞬间,等位线的形状发生严重的扭曲和回环,并且用中的等位线突然变密,电场发生了严重的畸变,油中场强骤然增大.这是由于在油、纸交界面上存在界面空间电荷,且分布情况复杂.  相似文献   

10.
袁晓洲  周文 《变压器》2018,55(7):32-36,后插1
研究了不同情况下的变压器油和浸油绝缘纸板的电导率和介电常数,采用有限元软件计算了不同幅值、不同类型电场作用下的油纸绝缘系统内部电场分布特性,提出了混合场强下的电场分布特性。  相似文献   

11.
基于电荷一电位有限元法分析换流变压器的油纸绝缘结构极性反转电场,该方法可以直接得到节点电位和节点电荷。对各个时刻节点电荷进行处理,提出得到电荷密度的方法。通过提取一类边界上的节点面电荷密度,可以准确地计算出第一类边界上的法向电场强度,从而可以更好地指导绝缘强度设计。通过一个有解析解的双层有损同轴绝缘结构模型,验证了方法的有效性。最后,分析了一个换流变压器阀侧绕组典型绝缘结构的极性反转电场变化过程。  相似文献   

12.
油纸绝缘内部合成电场数值模拟方法   总被引:1,自引:0,他引:1  
油纸绝缘作为换流变压器的主绝缘介质,其内部电场的分布受外加电压以及空间电荷的影响,而传统的数值方法无法准确计算空间电荷的影响。提出一种基于电极肖特基发射理论和瞬态上流元法(TUFEM)求解载流子输运方程的方法,计算了考虑注入势垒、载流子迁移率、陷阱捕获系数以及载流子复合系数等参数影响下的单层油纸绝缘介质内部空间电荷运动分布特性。与试验结果对比表明瞬态上流元法的有效性。研究典型油纸绝缘介质结构内部合成电场强度畸变程度随温度梯度变化的特性。同时,计算得到极性反转电压下不同时刻的电荷运动和电场分布规律。该方法可推广在(特)高压直流换流变压器内绝缘电场计算和优化设计。  相似文献   

13.
混合电场作用下换流变压器阀侧绕组电场分析   总被引:5,自引:5,他引:5  
为了计算换流变压器阀侧绕组端部电场分布,建立了油纸复合绝缘结构的电路模型。并在分析阀侧绕组励磁电压类型的基础上,利用有限元分析法计算了在交流、直流、交直流叠加和极性反转电压作用下的电场分布,总结了电场分布规律。结果表明,换流变压器阀侧绕组电场分布既有其规律性又有其复杂性,在直流电场作用下的阻性电场分布将导致纸板中的电场集中;而交流电场作用下的容性电场分布将导致变压器油中的电场集中;在极性反转过程中由于空间电荷的存在,油中承担了较高的电压。该分析结果可为换流变压器阀侧绕组端部的绝缘设计提供依据。  相似文献   

14.
高压直流换流变压器阀侧非线性电场的求解   总被引:5,自引:1,他引:4  
李季  罗隆福  许加柱  李勇 《高电压技术》2007,33(3):125-127,143
为研究换流变压器阀侧绕组端部的高度非线性直流电场,经理论分析建立了非线性电场的有限元计算模型。针对绝缘材料的非线性特征应用所建模型通过迭代求解,获得了工程关心部位的电场强度分布。计算一种典型的换流变压器绕组端部绝缘中直流电场分布的结果表明,绝缘纸板、变压器油中的最高场强值均变小,尤其是绝缘纸板中最大单元场强明显降低,这个变化趋势对绝缘结构设计非常有益。  相似文献   

15.
换流变压器绝缘材料电导率受电场强度、温度和压力等因素影响,即呈现非线性特性。为了考查非线性对换流变压器极性反转电场分布的影响,针对电导率对电场强度的非线性,对绝缘纸板和油的电导率非线性特性进行了数值拟合,并用于分析1台±500kV换流变压器的非线性极性反转电场。线性和非线性媒质条件下的计算结果表明,考虑1min极性反转的过程时,线性媒质中反转完成时刻的油中最大电场强度值同瞬间完成极性反转的数值结果几乎相同,而非线性条件下反转完成时刻的油中最大电场强度值要比瞬间完成极性反转的数值结果小50%。针对这一现象,进一步对非线性条件下空间电荷加速重新分布的过程进行了分析。  相似文献   

16.
笔者以变压器内部常见的油纸绝缘结构为例,利用自编程对换流变压器阀侧绕组直流电场进行了计算,并通过有限元软件ANSYS仿真,验证了文中方法的正确性。基于纸板材料电导率的各向异性特性,推导了电导率各向异性情况下直流电场的数学模型,给出了离散格式,分析了电导率对直流电场的影响,并对1台500 kV换流变压器进行了计算。计算结果表明,考虑材料的各向异性后纸板中场强减小,油中场强增大,变化的幅度与电导率初值有关。  相似文献   

17.
为研究换流变压器中油纸绝缘的直流特性,建立了一套高压直流试验系统,对油纸绝缘进行击穿电压与击穿时间的关系试验,即V-t特性试验.采用t×Vn C的模型对试验数据进行分析,得出了油纸绝缘V-t特性参数及试验规律.  相似文献   

18.
Oil-paper insulation is used within most of high voltage direct current(HVDC) converter transformers.Partial discharge(PD) in oil-paper insulation is a major reason for the development of internal faults in HVDC converter transformer,while PDs in oil-paper insulation mainly occur in terms of gas cavity discharges.There are few study results on the development characteristics of partial discharges in oil-paper insulation and dissolved gases in oils of HVDC converter transformers.Based on a gas cavity discharge model of oil-paper insulation,the present study investigates the development characteristics of partial discharges under AC-DC combined voltages and emphatically examines the variation characteristics of dissolved gases in the discharge development process.Experiment and analysis results show that the characteristics of partial discharges and dissolved gases in oils under AC-DC combined voltages are appreciably different with those under AC voltage.These results provide theoretical support for further research on partial discharges and on dissolved gases of other internal insulating defects and are helpful for the fault diagnosis of HVDC converter transformers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号