首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
精确的短期电力负荷预测对电力系统的生产调度和安全稳定运行起到十分重要的作用。为提高短期电力负荷预测模型的精度。提出了一种基于Elman神经网络的改进模型。通过在输出层和隐含层之间扩展一个新的承接层。增强了Elman神经网络的动态信息处理能力。仿真结果表明,改进型Elman神经网络预测模型的预测精度要高于反向传播、支持向量机和常规Elman,同时也说明了建立改进型Elman模型用于短期电力负荷预测是可行的。  相似文献   

2.
为了提高短期电力负荷预测精度,分别建立了基于BP神经网络和Elman神经网络的短期负荷预测模型。采用附加动量法优化BP神经网络以提高其收敛速度;针对Elman神经网络易陷入局部极值的缺点,改进其激励函数并采用LM算法优化学习算法。Matlab仿真结果表明,改进后的Elman神经网络模型比BP神经网络模型的预测精度高,收敛速度快,更适合处理动态问题。  相似文献   

3.
基于气象负荷因子的Elman神经网络短期负荷预测   总被引:19,自引:0,他引:19  
针对地区电网负荷易受气候影响的特点,引入气象负荷因子,提出了一种综合考虑各项气象因素.采用Elman反馈神经网络的短期负荷预测模型。由于Elman神经网络具有动态递归性能.可增强负荷预测模型的适应性。经上海电网实际数据的预测仿真计算,证明此方法与传统神经网络预测模型相比.既能减少输入变量个数,又能有效地提高预测精度。  相似文献   

4.
针对传统静态前馈神经网络动态性能较差的缺点,提出了多重局部回归的Elman神经网络,建立了网络的基本结构,并设计了相应的学习算法和学习过程。通过对负荷原始数据的归一化处理,提出将训练数据分段的思想,并利用分段数据对多重局部回归的Elman网络进行训练,通过对收敛曲线和训练误差的分析,确定合适的网络神经元个数和网络训练步数,最后利用实际负荷数据对网络进行了检验。结果表明,改进多重局部回归Elman神经网络比传统Elman神经网络具有更高的预测精度。  相似文献   

5.
基于改进型BP神经网络的短期电力负荷预测   总被引:4,自引:0,他引:4  
刘刚  黄剑华  刘学仁 《电气应用》2005,24(12):46-49
提出一种改进的 BP 神经网络学习算法,并将其应用于短期电力负荷预测中。研究 结果表明:基于改进的 BP 神经网络的短期电力负荷预测具有精度高的特点,负荷预测结果的相 对误差小于3.63%。  相似文献   

6.
电力负荷短期预测的改进神经网络方法   总被引:21,自引:3,他引:21  
针对电力负荷短期预测问题,提出了一种改进的神经网络预测方法。在时序训练样本 中引入了遗忘因子和期望因子,以提高当前预测的精确度;在权值调整过程中,采用指数型 能量函数,以改善学习收敛过程。预测仿真结果验证了上述结论。  相似文献   

7.
短期负荷预测(short-term load forcastings,STLF)对电力系统的经济和安全运行有着重要的作用。为提高短期负荷预测的精度,根据短期负荷的基本特性,提出了一种将相空间重构理论(phase space reconstruction space,PSRT)与Elman神经网络相结合的短期负荷多步预测模型。首先利用PSRT重构相空间的吸引子,然后用Elman神经网络来拟合相空间吸引子的多步演化,其中利用空间欧氏距离来选取Elman网络的输入样本。通过对广西电网短期负荷预测的分析表明,该多步预测方法是有效可行的。  相似文献   

8.
钱忆钊  陈良 《电工技术》2019,(14):55-56
利用 Matlab构建 Elman神经网络,并通过电力系统负荷预测世界竞赛提供的数据集来训练 Elman网络,从 而构建电力负荷预测模型,验证 Elman神经网络在电力负荷预测中的可行性和准确性。  相似文献   

9.
针对RBF神经网络的不足以及传统遗传算法的特点,采用浮点数编码的自适应遗传算法(AGA)作为RBF神经网络的学习算法,来确定RBF神经网络隐含层的中心参数和宽度参数,形成AGA-RBF网络来进行负荷预测,并通过实例验证,该方法与RBF神经网络相比,能有效提高预测精度和改善网络性能.  相似文献   

10.
为提高风电场输出功率预测精度,提出一种动态基于神经网络的功率预测方法。根据实际运行的风电场相关风速、相关风向和风电功率的历史数据,建立了基于 Elman神经元网络的短期风电功率预测模型。运用多层 Elman 神经网络模型对西北某风电场实际 1 h 和 24 h 的风电输出功率预测,与BP神经网络模型对比,经仿真分析证明前者具有预测精度高的特点,三隐含层 Elman 神经网络模型预测效果最佳。这表明利用 Elman 回归神经网络建模对风电功率进行预测是可行的,能有效提高功率预测精度。  相似文献   

11.
设计了一个三层神经网络模型来实现电力系统的短期负荷预测。用了改进的BP学习算法,以提高训练的收敛速度。预测仿真结果表明,所设计的神经网络是可以进行短期负荷预测的。  相似文献   

12.
基于模糊神经网络的电力负荷短期预测   总被引:5,自引:3,他引:5  
针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems)网络提供的实际数据进行详细分析确定了影响日最大负荷的相关因素,进而选择了合适的模糊输入以建立相应的模糊神经网络预测模型,并取得了较为理想的预测结果。算例分析结果充分证明了模糊神经网络在短期电力负荷预测方面具有较好的应用前景。  相似文献   

13.
陈洋  瞿睿 《现代建筑电气》2013,4(1):53-57,68
由于空调控制系统具有非线性、大滞后、时变性等特点,提出了一种基于改进型Elman神经网络的模糊神经网络控制算法,其预测输出与实际输出的差值作为模糊神经网络控制器的输入,使空调控制系统具有较高的控制精度和良好的动态特性和鲁棒性。仿真结果表明:与传统PID控制相比,基于Elman神经网络的模糊神经网络控制具有较强的鲁棒性,学习能力强,控制精度高,控制效果好。并具有自适应能力,应用前景十分广泛。  相似文献   

14.
介绍了短期负荷的特点,深入分析了温度、降雨量、时间等因素对负荷的影响。应用BP神经网络,建立了充分考虑各种因素的日最高负荷预测和日平均负荷预测模型,最后通过贵阳城南分局历史负荷进行验证,表明本论文所建立的神经网络预测模型充分考虑了各种负荷因素影响,预测精度良好,具有较好的非线性映射能力,有进一步开发应用于实际预测的良好前景。  相似文献   

15.
基于模糊理论及神经网络的电力短期负荷预测方法   总被引:1,自引:0,他引:1  
分析了电力短期负荷的构成及其影响因素的特点,结合模糊技术和神经网络。设计了用于电力短期负荷预测的神经网络。利用模糊技术及相似性原理对作为BP神经网络训练样本的电力负荷按天气特征进行分类识别,同时对带有噪音的训练样本提出了处理方法。针对BP神经网络的不足,提出了改进算法;并用实际例子对上述电力短期负荷预测神经网络进行了例证。  相似文献   

16.
针对RBF神经网络的不足以及传统遗传算法的特点,采用浮点数编码的自适应遗传算法(AGA)作为RBF神经网络的学习算法.来确定RBF神经网络的隐含层的中心参数和宽度参数,形成AGA—RBF网络来进行负荷预测,并通过实例验证,该方法与RBF神经网络相比,能有效地提高预测精度和改善网络性能。  相似文献   

17.
文章从调度运行和需求侧管理出发,分析电力负荷的构成特点和负荷值变化的原因;将负荷突变值和平稳值采用平均值的方法求出接近的真实值,建立负荷短期预测模型,再输入历史负荷(常规)数据、天气状况的历史数据和特别事件预测数据,得到负荷短期预测值。  相似文献   

18.
基于竞争分类的神经网络短期电力负荷预测   总被引:13,自引:5,他引:13  
根据电力负荷的特点,在考虑天气、日类型、实际历史负荷等因素对预测负荷影响的基础上,提出了一种基于竞争分类的神经网络短期负荷预测方法.应用神经网络的竞争学习对相关数据进行分类,将历史数据分成若干类别从而找出与预测日同类型的预测类别.利用相应的BP算法对未来24小时负荷进行短期预测,该方法充分发挥了神经网络处理非线性问题的能力.结果表明,该方法取得了较满意的预测精度.  相似文献   

19.
基于BP神经网络的电力短期日负荷预测   总被引:1,自引:0,他引:1  
在分析了温度、降雨量、时间等因素对负荷的影响的基础上,应用BP神经网络建立负荷预测模型,对输入负荷值进行归一化处理,网络的训练应用Levenberg-Marquardt算法,很大程度上提高了神经网络的收敛速度和预测精度.通过实例验证该方法可行.  相似文献   

20.
电力系统短期负荷预测是电力部门的重要工作之一。在短期负荷预测中,电力负荷变化受多方面因素的影响。负荷曲线呈现出强烈的非线性。正确认识和分析影响负荷因素对负荷的影响一直是短期负荷预测的关键问题。采用径向基函数神经网络进行电力系统短期负荷预测可获得更高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号