首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对面齿轮材料18Cr2Ni4WA,研究飞秒激光辐照面齿轮材料的热力效应,建立飞秒激光烧蚀面齿轮温度-应力耦合模型,分析多脉冲时不同能量密度下电子温度、晶格温度以及热应力的变化过程。结果表明:电子温度、晶格温度以及热应力随激光能量密度的增大而增大。实验和仿真的对比结果说明,烧蚀齿面表层为残余压应力,烧蚀深度和凹坑直径随激光能量密度的增加而增大,较大的激光能量密度会产生较多的熔融物,降低飞秒激光加工质量,当能量密度为1.78 J/cm2时,齿面表层形态较好。本文为提高飞秒激光精微烧蚀面齿轮质量提供了研究基础。  相似文献   

2.
A simple model is developed for describing the interaction of intense femtosecond laser pulses with solid-state targets which is based on a set of equations of two-temperature hydrodynamics for electrons and ions of a plasma formed upon ionization of the target matter, equations describing the variation of ion composition of plasma upon ionization and the heat energy expenditure on thermal ionization, and equations defining the energy contribution by laser radiation to the target matter. A self-similar solution is suggested which well describes the heating of plasma electrons during the time of effect of a femtosecond laser pulse in a wide range of its parameters. Lagrangian computer codes developed for this purpose are used to derive, in a one-dimensional approximation, a numerical solution for the set of equations for the parameters corresponding to femtosecond experimental facilities under development in Germany and Russia. Profiles of hydrodynamic quantities (electron and ion temperature, plasma pressure and density, mean ion charge) obtained in the numerical solution at different moments of time may be used for preliminary assessment of the results of future experiments with a view to optimizing their parameters.  相似文献   

3.
The rapidly increasing information density required of modern magnetic data storage devices raises the question of the fundamental limits in bit size and writing speed. At present, the magnetization reversal of a bit can occur as quickly as 200 ps (ref. 1). A fundamental limit has been explored by using intense magnetic-field pulses of 2 ps duration leading to a non-deterministic magnetization reversal. For this process, dissipation of spin angular momentum to other degrees of freedom on an ultrafast timescale is crucial. An even faster regime down to 100 fs or below might be reached by non-thermal control of magnetization with femtosecond laser radiation. Here, we show that an efficient novel channel for angular momentum dissipation to the lattice can be opened by femtosecond laser excitation of a ferromagnet. For the first time, the quenching of spin angular momentum and its transfer to the lattice with a time constant of 120+/-70 fs is determined unambiguously with X-ray magnetic circular dichroism. We report the first femtosecond time-resolved X-ray absorption spectroscopy data over an entire absorption edge, which are consistent with an unexpected increase in valence-electron localization during the first 120+/-50 fs, possibly providing the driving force behind femtosecond spin-lattice relaxation.  相似文献   

4.
Ultrafast generation of acoustic waves in copper   总被引:1,自引:0,他引:1  
The ultrafast generation of acoustic waves in copper films is investigated with a femtosecond optical pump and probe technique. By studying the generation at times before the electrons and the lattice come into equilibrium, the strength of their interaction can be measured and the dynamics of ultrafast electron diffusion can be studied. The acoustic strain pulses observed are bipolar in shape with exponential tails that are much broader than expected from simple thermoelastic stress generation. This can be explained by the supersonic diffusion of electrons over distances larger than the optical skin depth. The nonequilibrium diffusion equations governing stress generation are nonlinear, and are solved numerically. Using a linearized formulation, we also solve them analytically to a good approximation. The acoustic strain profile provides a `snapshot' of the initial spatial temperature distribution of the lattice, thus allowing a sensitive probe of the nonequilibrium dynamics of the diffusion. The electron-phonon coupling constant can be estimated directly from the acoustic pulse duration, provided that the sound velocity and thermal conductivity are known. In general, the relaxation and diffusion of carriers is specific to the sample in question, whether metal or semiconductor, suggesting the use of this method for thin film characterization  相似文献   

5.
Ultrafast electron pulses, combined with laser‐pump and electron‐probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field‐driven photoemission from metal tips provides high light‐phase synchronization, but suffers large electron energy spreads (3–100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field‐driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube‐based ultrafast electron source opens exciting prospects for extending current characterization to sub‐femtosecond temporal resolution as well as sub‐nanometer spatial resolution.  相似文献   

6.
We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.  相似文献   

7.
We investigate the generation of THz pulses when arrays of silver nanoparticles are irradiated by femtosecond laser pulses, providing the first reproducible experimental evidence in support of recent theoretical predictions of such an effect. We assess our results in the context of a model where photoelectrons are produced by plasmon-mediated multiphoton excitation, and THz radiation is generated via the acceleration of the ejected electrons by ponderomotive forces arising from the inhomogeneous plasmon field. By exploring the dependence of the THz emission on the femtosecond pulse intensity and as a function of metal nanoparticle morphology, and by comparing measurements to numerical modeling, we are able to verify the role of the particle plasmon mode in this process.  相似文献   

8.
在传统双温模型基础上,建立考虑变离焦量效应和随电子温度变化的动态吸收率效应的三维双温模型。分析烧蚀过程中电子、晶格温度的变化情况和烧蚀凹坑的形貌。对面齿轮材料18Cr2Ni4WA进行飞秒激光烧蚀实验结果表明:随着单脉冲飞秒激光能量密度的增大,电子的峰值温度升高,烧蚀凹坑的深度和直径增大;单脉冲飞秒激光的脉宽对烧蚀形貌的影响并不显著;烧蚀凹坑的直径和深度不会随脉冲数目一直增大,脉冲数目存在阈值,超过该阈值对于烧蚀凹坑的形貌影响反而不利。  相似文献   

9.
InAs has previously been reported to be an efficient emitter of terahertz radiation at low excitation fluences by use of femtosecond laser pulses. The scaling and saturation of terahertz emission from a (100) InAs surface as a function of excitation fluence is measured and quantitatively compared with the emission from a GaAs large-aperture photoconductive switch. We find that, although the instantaneous peak radiated terahertz field from (100) InAs exceeds the peak radiated signals from a GaAs large-aperture photoconductive switch biased at 1.6 kV/cm, the pulse duration is shorter. For the InAs source the total energy radiated is less than can be obtained from a GaAs large-aperture photoconductive switch.  相似文献   

10.
Laser heating of condensed matter is reviewed according to the temporal duration of the excitation. Differences in the various heating regimes are discussed and relevant diagnostics techniques are briefly illustrated, especially in connection with picosecond and femtosecond laser pulses. The recent results obtained with ultrafast excitation strongly suggest that the extreme condition of excitation of matter may be reached and diagnosed using these techniques.Paper presented at the Third Workshop on Subsecond Thermophysics, September 17–18, 1992, Graz, Austria.  相似文献   

11.
The purpose of this study is to analyze the heat transport mechanism of femtosecond laser ablation. Under the condition that laser pulse duration is on the order of femtoseconds, a thermal nonequilibrium state between an electron and atom exists and must be taken into account. In order to describe physical phenomena such as heat transport under a nonequilibrium state, a new method, modified molecular dynamics in which molecular dynamics (MD) couples with the two-temperature model (TTM) in a particle-based method, is proposed. In this method, MD simulates the motion of an atom and TTM simulates both electron heat conduction and energy exchange through electron-atom interactions. This approach yields the use of laser intensity as a parameter. For nonequilibrium heat transport, electron heat conduction transports most of the absorbed laser energy and becomes the dominant heat transport mechanism. At thermal equilibrium, above the ablation threshold fluence, electron heat conduction and thermal waves are dominant, while below the ablation threshold fluence, only electron heat conduction is dominant.  相似文献   

12.
半导体可饱和吸收镜(SESAM)在飞秒脉冲激光器锁模中,是一种非常有潜力的锁模启动器.其损伤闽值的高低与连续锁模阈值比较相近,极易损伤,因而研究在飞秒激光作用下SESAM的损伤阈值很有必要.利用飞秒激光分别对单晶硅、自然生长SESAM及腐蚀后SESAM在50fs、200fs和400fs脉宽下进行了表面烧蚀研究,并且保证每次烧蚀的激光脉;中个数为50个.结果发现单晶硅和自然生长SESAM的损伤阈值要高于腐蚀乓SESAM,随脉宽的增加而逐渐增大;而腐蚀后SESAM的损伤阈值却随脉宽的增加而逐渐减小.  相似文献   

13.
The nonlocal hyperbolic heat conduction equation is used to describe the thermal inertia of thin metal films (TMF) heated with femtosecond laser pulses. It is shown that for TMF the signatures of thermal inertia are (i) the delay of the heating process and (ii) the strong localization of the thermal energy in TMF.Paper presented at the Fourth International Workshop on Subsecond Thermophysics, June 27–29, 1995, Köln, Germany.  相似文献   

14.
The use of ultrafast laser pulses to initiate solid-state phase-transitions in certain materials has shown promise in achieving sub-nanosecond phase changes with different optical properties. These phase changes have been well studied using pulse durations between femtoseconds and nanoseconds to determine the dynamics for the reversible phase changes on multiple time scales. In this study femtosecond pulse shaping techniques, driven by evolutionary algorithms, were used to obtain optimized temporally shaped ultrashort laser pulses to induce and control permanent phase changes in GeSb thin-films. Through monitoring the pulse effects it has been determined that the crystalline-to-amorphous phase transition is minimized using optical pulses with pulse widths less than the electron-phonon coupling time. It is maximized by using pulses longer than the time required for energy transfer from the excited carriers to the lattice.  相似文献   

15.
Xu B  Coello Y  Lozovoy VV  Dantus M 《Applied optics》2010,49(32):6348-6353
A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution (~2 nm) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.  相似文献   

16.
Molecular‐crystal nanorods composed of 9‐anthracenecarboxylic acid can undergo reversible bending due to molecular‐level geometry changes associated with the photodimerization of the molecules in the crystal lattice. The use of highly focused near‐IR femtosecond laser pulses results in two‐photon excitation of micrometer‐scale regions and is used to induce transient bends at various locations along the length of a single 200‐nm‐diameter nanorod. Bending can be observed in nanorods with diameters as small as 35 nm, and translational motion of a single nanorod could be induced by sequential bending of longer segments. A kinetic model is presented that quantitatively describes the bending and relaxation dynamics of individual rods. The results of this work show that it is possible to use laser excitation conditions to control the location, rate, and magnitude of photodeformations in these nanorods. The ability to control the motion of these ultrasmall photomechanical structures may be useful for manipulating objects on the nanoscale.  相似文献   

17.
Eom I  Park S  Han HS  Yee KJ  Baik SH  Jeong DY  Joo T  Lim YS 《Nano letters》2012,12(2):769-773
Free induction decay of the coherent electronic transition and coherent phonon oscillations of the radial breathing mode in single-walled carbon nanotubes are simultaneously observed via direct resonant excitation of the lowest E(11) optical transition in the near-infrared region from 0.939 to 1.1 eV. We show that coherent electronic oscillations corresponding to the detuning of the probe energy from resonance can be exploited for the chirality assignment of carbon nanotubes, together with the robust assignment of the coherent lattice vibrations resonantly excited by femtosecond pulses. Excitation spectra show a large number of pronounced peaks that map out chirality distributions in great detail.  相似文献   

18.
Current‐induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single‐ electronic‐pulse‐driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gdx [FeCo]1?x ‐based structures are studied to compare the effect of femtosecond laser and hot‐electron pulses. It is demonstrated that a single femtosecond hot‐electron pulse causes deterministic magnetization reversal in either Gd‐rich and FeCo‐rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time‐resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot‐electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current‐induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer.  相似文献   

19.
Luo Q  Yu J  Hosseini SA  Liu W  Ferland B  Roy G  Chin SL 《Applied optics》2005,44(3):391-397
High-energy femtosecond laser pulses propagating in the atmosphere undergo self-focusing resulting in the appearance of the phenomenon of filamentation. We observed an extra-attenuation of such (terawatt) femtosecond laser pulses propagating in the atmosphere when compared with long pulses (200 ps) with the same energy. This is because, in contrast to the linear propagation of the long pulse, the input femtosecond laser pulse is attenuated owing to either absorption through multiphoton ionization/tunnel ionization or to scattering on the laser-induced plasma; self-phase-modulation and self-steepening further convert partially the energy initially contained in the fundamental bandwidth into the broad side bands of the laser, becoming eventually a white-light laser pulse (supercontinuum). The experimental data allow us to extract an effective extra-attenuation coefficient for an exponential decay of the input pulse energy with the propagation distance. Such a coefficient allows us to estimate an upper bound of the filament length under the experimental conditions used. More generally, our observation leads to a new technique to remotely detect light filaments in the atmosphere.  相似文献   

20.
In this communication, we present the experimental results of two- and three-photon excitation studies on silicon quantum dots (QDs) in chloroform (as well as in water) by using femtosecond laser pulses with wavelengths of 778 and 1335 nm and a pulse duration approximately 160 fs. The photoluminescence spectral distributions are nearly the same upon one-, two-, and three-photon excitation. With one- and two-photon excitation, the temporal relaxation measurements of photoluminescence emission manifest the same multiexponential decay behavior in the time range from 0.05 ns to 15 mus, characterized by three successive decay constants: 0.75 ns, 300 ns, and 5 mus, respectively. Finally, the two-photon absorption spectrum in the spectral range of 650-900 nm and the three-photon absorption spectrum in the spectral range of 1150-1400 nm have been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号