首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-reinforced polymer composites or all-polymer composites have been developed to replace traditional glass-fibre-reinforced plastics (GFRP) with good lightweight, mechanical and interfacial properties and enhanced recyclability. Poly(ethylene terephthalate) (PET) is one of the most attractive polymers to be used in these fully recyclable all-polymer composites, in terms of cost and properties. In this work, unidirectional all-PET composites were prepared from skin–core structured bi-component PET multifilament yarns by a combined process of filament winding and hot-pressing. During hot-pressing, the thermoplastic copolyester skin or sheath layers were selectively melted to weld high-strength polyester cores together creating an all-PET composite. Physical properties of the resulting composites including thickness, density and void content were reported. The effect of processing parameters, i.e. consolidation temperature and pressure on mechanical properties and morphology was investigated in order to balance good interfacial adhesion with residual tensile properties of the composite.  相似文献   

2.
The effect of modifying the particle/matrix interfacial region on the morphology and tensile behaviour of glass bead-filled polypropylene (PP) composites was studied. The interface modification was promoted by blending PP with a small concentration (5% by weight) of poly(ethylene terephthalate-co-isophthalate) (co-PET). Ten different PP/co-PET/glass beads ternary composites were prepared, characterized and compared with the homologous PP/glass beads binary ones. Maleic anhydride-grafted PP was added as a compatibilizing agent for PP and co-PET in some of the studied formulations, and its effect studied. Furthermore, four different silane-treated glass beads were used to prepare the composites (50 wt.%). Results showed that three different interfaces, corresponding to three different levels (low, middle and high) of particle/matrix adhesion, could be obtained in these composites by varying the matrix composition and the silane coupling agent on the glass bead surface, which resulted in a wide range of tensile properties, from ductile composites with low tensile strength and high elongation to brittle ones with high tensile strength. It was found that co-PET embeds glass bead surface independently of the silane coupling agent employed. Finally, the adhesion degree differences between the different composite phases seemed to be the main cause to explain the differences found in the sensitivity of the composite tensile characteristics to the strain rate.  相似文献   

3.
A novel phosphorus-containing thermotropic liquid crystalline copolyester with aromatic ether moiety (TLCP-AE) was used to prepare the in situ composites of poly(ethylene terephthalate) (PET)/liquid crystalline polymer. The morphological structure and properties of PET/TLCP-AE in situ composites were investigated using scanning electron microscopy (SEM), capillary rheometer, tensile tests, limiting oxygen index tests (LOI), cone calorimeter and thermogravimetric analysis (TGA). The rheological measurements show that the viscosity ratio of TLCP-AE to PET at 260 °C is less than 1, which meets a precondition for TLCP-AE to form fibrils in PET matrix during processing. The mechanical, LOI and cone tests prove that TLCP-AE can improve the mechanical properties and flame retardancy of PET synchronously. Moreover, TGA results exhibit that the initial decomposition temperatures and the final residues of PET/TLCP-AE composites increase with increasing TLCP-AE content.  相似文献   

4.
Tensile and compressive behaviors of chopped carbon fiber tapes reinforced thermoplastics have been investigated by varying compression molding conditions (to study the effect of the molding pressure) and the tape length (to analyze the fiber length effect on the mechanical properties of produced composites). Fractographic analysis of prepared specimens conducted after the experiments indicated that the obtained modulus values were almost independent of both the tape length and molding pressure, while the measured strengths exhibited high molding pressure sensitivity. Interlaminar shear strength was considered to be the dominate factor in damage determination during tensile testing, while interlaminar tensile strength played the main role in compression fracture. Increase in the tape length led to a slight increase in the strength magnitude, but also a significant increase in the standard deviation of strength due to the decrease in structural regularity.  相似文献   

5.
The role of interfacial adhesion between fibre and matrix on the residual strength behaviour of carbon-fibre-reinforced metal laminates (FRMLs) has been investigated. Differences in fibre/matrix adhesion were achieved by using treated and untreated carbon fibres in an epoxy resin system. Mechanical characterisation tests were conducted on bulk composite specimens to determine various properties such as interlaminar shear strength (ILSS) and transverse tension strength which clearly illustrate the difference in fibre/matrix interfacial adhesion. Scanning electron microscopy confirmed the difference in fracture surfaces, the untreated fibre composites showing interfacial failure while the treated fibre composites showed matrix failure. No clear differences were found for the mechanical properties such as tensile strength and Young's modulus of the FRMLs despite the differences in the bulk composite properties. A reduction of 7·5% in the apparent value of the ILSS was identified for the untreated fibre laminates by both three-point and five-point bend tests. Residual strength and blunt notch tests showed remarkable increases in strength for the untreated fibre specimens over the treated ones. Increases of up to 20% and 14% were found for specimens with a circular hole and saw cut, respectively. The increase in strength is attributed to the promotion of fibre/matrix splitting and large delamination zones in the untreated fibre specimens owing to the weak fibre/matrix interface.  相似文献   

6.
The effects of oxygen plasma processing on the improved interfacial adhesion properties of poly(1,4-phenylene-cis-benzobisoxazole) (PBO) fiber reinforced epoxy composites have been investigated in this paper. Both As-spun (AS) and high-modulus (HM) PBO fiber systems were studied. The characterization techniques included microscopy, surface analysis, and composite interfacial adhesion tests. The results showed that the high-modulus fiber surface free energy could be increased significantly by 42.2% from 46.2 to 65.7 mJ/m2, while the tensile strength was only slightly decreased by 3.4% from 5.87 to 5.67 GPa. In addition, the interfacial adhesion strength of PBO fiber reinforced epoxy composite was improved by 37.5% from 32.5 to 44.7 MPa for the HM fiber system. The improvement has been attributed to the enhanced cohesive failure that dissipated more fracture energy.  相似文献   

7.
考察了高界面压应力对不相容聚对苯二甲酸乙二醇酯(PET)/聚乙烯(PE)和聚碳酸酯(PC)/PE共混物拉伸性能的影响.高界面压应力是共混物低温成型(PE的成型温度)时,分散相与基体从加工温度冷却到室温过程中基体的收缩比分散相粒子大产生的.尽管PET/PE和PC/PE共混物极不相容,但拉伸强度和模量随着PET和PC含量增加而增加.PET与PC含量相同时,PC/PE的拉伸强度和模量高于PET/PE的.采用Takayanangi方程计算共混物的拉伸模量时,具有高界面压应力的PC/PE共混物的拉伸强度高于界面有良好粘结的共混物的理论值,表明在不添加增容剂时,可通过控制加工条件改善共混物界面相互作用,提高共混材料的性能.  相似文献   

8.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

9.
《Composites Part A》2007,38(1):147-161
The creation of highly oriented, co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composites, with a large temperature processing window (>30 °C) and a high volume fraction of highly oriented PP molecules (>90%). This paper describes all-PP composites made from woven tape fabrics and reports the tensile and compressive properties of these, with reference to composite processing conditions and compares these mechanical properties to those of commercial alternatives.  相似文献   

10.
将连续炭纤维束用自制的空气梳分散成单丝状长带后, 通过采用循环伏安法的电化学方法将单体苯酚在炭纤维表面聚合成膜, 对炭纤维进行表面修饰, 以提高复合材料中炭纤维与树脂基体的界面粘结性能。红外光谱分析表明, 苯酚电聚合膜能够增加炭纤维表面的羟基、 醚键等活性官能团, 从而提高炭纤维与环氧树脂基体的界面粘结强度。与未进行表面修饰的炭纤维增强环氧树脂复合材料相比, 以聚苯酚膜修饰的炭纤维单丝带增强的环氧树脂基复合材料横向拉伸强度最大提高了90%, 纵向拉伸强度最大提高了45%, 层间剪切强度最大提高了110%。实验也表明, 将炭纤维束分散成炭纤维单丝带后能够更有效地增强复合材料的各项力学性能。   相似文献   

11.
Composites from polybutylene succinate (PBS) and lignin-based natural material were fabricated using a melt mixing process. The effects of lignin material and polymeric methylene diphenyl diisocyanate (PMDI) compatibilizer on the properties of composites were investigated. Incorporation of 65% lignin material into PBS was achieved with an improvement in the tensile and flexural properties of composites. Incorporation of 1% PMDI in 50% lignin filled composites enhanced the tensile, flexural and impact strength simultaneously. Heat deflection temperature (HDT) of the virgin plastic also increased with lignin and PMDI incorporation. Improved interfacial adhesion was observed from SEM micrographs of the compatibilized composites.  相似文献   

12.
The high-performance carbon fiber reinforced poly(phenylene sulfide) composites were continuously fabricated using thermoplastic prepregs in a double-belt press. The effects of process velocity on the composite consolidation quality and mechanical properties were investigated. It is found that the tensile and interlaminar shear properties of composites prepared using the double-belt press are comparable to that of compression-molded composites when the process velocity is no more than 0.20 m·min−1. The composite fracture morphologies also show different failure mechanisms between different samples and indicate that the interfacial adhesion strength may play a vital role in the mechanical properties of CF/PPS composites. Furthermore, experimental results show that the heating time above 330 °C should be over 440 s and the void content should be lower than 2.38% in order to obtain high performance CF/PPS composites.  相似文献   

13.
PP/wood composites were prepared from two lignocellulosic fibers with different particle size and aspect ratio in order to determine the effect of these factors on the deformation and failure mechanism as well as on the properties of the composites. Wood content was changed from 0 to 80 wt%. Maleinated polypropylene (MAPP) was added to improve interfacial adhesion. The MAPP/wood ratio was kept constant at 0.1. Mechanical properties were determined by tensile testing. Micromechanical deformation processes were followed by acoustic emission (AE) and volume strain (VOLS) measurements, and by the study of fracture surfaces. The results proved that micromechanical deformations change drastically both with decreasing particle size and changing interfacial adhesion. Less debonding, fiber pull out and fiber fracture occur in composites containing small particles. Hardly any change was observed in the mechanical properties of the composites with decreasing particle size, in spite of the drastic modification of the deformation mechanism. The apparently slight influence of particle size on composite strength results from the smaller aspect ratio of the small particles, which indicates that orientation and orientation distribution must have a strong effect on reinforcement. Further improvement in composite strength is possible only through the optimization of particle size, aspect ratio and the inherent strength of wood.  相似文献   

14.
《Composites Science and Technology》2006,66(11-12):1724-1737
Highly oriented polypropylene (PP) tapes, with high tensile strength and stiffness achieved by molecular orientation during solid state drawing are consolidated to create high performance recyclable “all-polypropylene” (all-PP) composites. These composites possess a large temperature processing window (>30 °C) and a high volume fraction of highly oriented PP (>90%). This large processing window is achieved by using co-extruded, highly drawn PP tapes. This paper investigates the impact resistance of these all-PP composites, and the relationship between penetrative and non-penetrative impact behaviour, and composite consolidation conditions. The response of all-PP composites to falling weight impact is reported together with a comparison to conventional commercial glass reinforced polypropylene composites. A model for energy absorption is proposed by comparison with previous studies based on interfacial and tensile failure of tapes and composites.  相似文献   

15.
Bamboo cellulose fibers were treated with NaOH aqueous solution and silane coupling agent, respectively, before they were applied into epoxy composites. The effect of surface modification on mechanical properties was evaluated by tensile and impact tests under controlled conditions. Compared with the untreated cellulose filled epoxy composites, the NaOH solution treatment increased the tensile strength by 34% and elongation at break by 31%. While silane coupling agent treatment produced 71% enhancement in tensile strength and 53% increase in elongation at break. The scanning electron microscopy (SEM) was used to observe the surface feature of the cellulose fibers and the tensile fractures as well as cryo-fractures of the composites. The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of the cellulose fibers before and after modifications. The results indicated different mechanisms for the two modifications of cellulose. The NaOH solution partly dissolved the lignin and amorphous cellulose, which resulting in splitting the fibers into smaller size. This led to easier permeating into the gaps of the fibers for epoxy resin (EP) oligmer and forming effective interfacial adhesion. Based on the emergence of Si–O–C and Si–O–Si on the cellulose surface, it was concluded that the enhancement of mechanical properties after coupling agent modification could be ascribed to the formation of chemical bonds between the cellulose and the epoxy coupled with the coupling agent.  相似文献   

16.
Interphases exist in hybrid materials and significantly influence their mechanical performance. To find a bridge between the microscopic and macroscopic mechanical properties, this work investigates the microscopic nature of glass fiber surfaces and glass/CBT interphases in terms of topography, fractography, and adhesion properties. The variations in glass fiber surface properties result from the different sizings. Using the single fiber pull-out test, AFM, and ζ potential tests, it is shown that the interfacial bond strengths in CBT resin composites can vary depending on the kind of sizing formulation and properties. The greatest adhesion strength is achieved by aminosilane sizings with epoxy resin film former. The surface roughness of the fibers can be varied by sizings with different content and ζ potential values, which has no significant contribution to interphase adhesion strength from ‘mechanical interlocking’. For the systems with film formers, cohesive failure occurs and similar values of both interfacial adhesion strength, τd, and fracture energy release rate, Gic, are obtained, in which τd approaches the shear yield strength of CBT matrix. A further enhancement of interfacial adhesion is limited by the mechanical properties and the non-homogeneous microstructure of CBT resin due to the less-than-perfect CBT polymerization.  相似文献   

17.
Hierarchical +1 composites consisting of carbon fibers with carbon nanotubes (CNTs) grown onto them and an epoxy matrix were processed, and the mode I fracture toughness of these composites was evaluated. The mode I fracture toughness of the initial batches of the hierarchical composites was lower than that of the baseline samples without CNTs. Hence, efforts to enhance the adhesion between carbon fibers and CNTs were made, resulting in enhanced adhesion. The enhanced adhesion was confirmed by Scotch tape tests and mode I fracture toughness tests followed by fractographic studies. The mode I fracture toughness of the hierarchical composites with enhanced adhesion was 51% and 89% higher than those of the baseline samples and hierarchical composites with poor adhesion, respectively. Moreover, fractographic studies of the fracture surfaces of the hierarchical composites with enhanced adhesion showed that CNTs were still attached to carbon fibers even after the mechanical tests.  相似文献   

18.
Ethylene vinyl acetate (EVA) copolymer was filled with aluminum hydroxide (ATH) with three different sizes of 1.8, 1.2 and 0.8 μm in various volume fractions. The effect of interfacial compatibilizer on the properties of the composites was studied by morphology observation, dynamic mechanical analysis, tensile and flame tests. The results illustrated that the incorporation of functionalized polyethylene combined with dicumyl peroxide (DCP) and the silane coupling agent led to a pronounced improvement in the tensile strength compared to the composites with ATH untreated or treated by silane coupling agent alone. It was found that good dispersion and interfacial adhesion between the ATH particles and the matrix can improve the flame properties of composites. The particle size has a great effect on the flammability of the EVA/ATH composites. ATH with smaller particle size can increase the LOI value and improve the UL-94 flammability of the composites.  相似文献   

19.
Silicon carbide multilayer composites containing short carbon fibres (Csf/SiC) were prepared by tape casting and pressureless sintering. The C fibres were dispersed in solvents with dispersant (Triton X-100) firstly and then mixed with the SiC slurry to make green Csf/SiC tapes. Fibres were homogeneously distributed in the tape and tended to align fairly well along the tape casting direction. The addition of short C fibre hindered the shrinkage in the plane containing the fibres as well as the grain growth of SiC during sintering. The weight loss occurring during oxidation tests of Csf/SiC multilayer composites increased with fibre amount and material porosity. Elastic modulus of Csf/SiC multilayer composites decreased linearly with fibre amount. Bending strength presented clear relationship with the relative density, that is with the total porosity.  相似文献   

20.
In this work, the natural sisal fibers were fibrillated by enzyme hydrolysis or mechanical disintegration into microfibrils with a width of 5-10 μm and different aspect ratios. The sisal microfibrils or microfibril mats were added into the gelatin to prepare biomass composites, by solvent-casting or solution impregnation techniques, respectively. The morphology, mechanical properties, biodegradation property, and water adsorption behaviors of the composites were investigated. It was found that the tensile strength of the composites was dramatically increased with the addition of sisal microfibrils. The degradation ratio of the composites decreased continuously with increasing the sisal fibril content. The addition of sisal microfibrils decreased the water uptake at equilibrium and the water diffusion coefficient. Scanning electron microscopy characterization showed that the sisal microfibrils were very well embedded in the gelatin matrix, showing a good interfacial adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号