首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We report the results of a phylogenetic survey of the retrotransposon copia in the melanogaster subgroup of the Drosophila genus. The polymerase chain reaction was used to amplify the copia 5' long terminal repeat and the adjacent untranslated leader region from representative melanogaster subgroup species. Restriction and sequence analyses of this region reveal discrete classes of copia size variants within the melanogaster subgroup. Phylogenetic comparisons of copia sequence data indicate that the size variants represent different copia subfamilies which diverged prior to their distribution in the melanogaster subgroup. Our results also suggest that copia elements have been subject to horizontal and vertical transmission during their evolution.  相似文献   

2.
3.
Significant differences in levels of copia [Drosophila long terminal repeat (LTR) retrotransposon] expression exist among six species representing the Drosophila melanogaster species complex (D. melanogaster, Drosophila mauritiana, Drosophila simulans, Drosophila sechellia, Drosophila yakuba, and Drosophila erecta) and a more distantly related species (Drosophila willistoni). These differences in expression are correlated with major size variation mapping to putative regulatory regions of the copia 5' LTR and adjacent untranslated leader region (ULR). Sequence analysis indicates that these size variants were derived from a series of regional duplication events. The ability of the copia LTR-ULR size variants to drive expression of a bacterial chloramphenicol acetyltransferase reporter gene was tested in each of the seven species. The results indicate that both element-encoded (cis) and host-genome-encoded (trans) genetic differences are responsible for the variability in copia expression within and between Drosophila species. This finding indicates that models purporting to explain the dynamics and distribution of retrotransposons in natural populations must consider the potential impact of both element-encoded and host-genome-encoded regulatory variation to be valid. We propose that interelement selection among retrotransposons may provide a molecular drive mechanism for the evolution of eukaryotic enhancers which can be subsequently distributed throughout the genome by retrotransposition.  相似文献   

4.
5.
6.
7.
The ring gland function of Drosophila melanogaster is controlled by the CNS. To identify genes that are active in brain cells and are involved in the ring gland control, we analysed enhancer trap lines with respect to CNS- and/or ring gland-specific lacZ expression in third-instar larvae. From one of the enhancer trap lines, which shows specific lacZ expression in the CNS and prothoracic part of the ring gland, the mub gene was cloned. The gene is strongly expressed in the mushroom bodies throughout development. Nucleotide sequence analysis of cDNA clones revealed a high degree of similarity to vertebrate RNA binding KH domain proteins, suggesting a function of the MUB protein in binding and stabilizing of specific mRNAs in the mushroom bodies. Null mutants of the mub gene do not exhibit a visible mutant phenotype. We speculate, therefore, that the mub gene is involved in learning and memory processes.  相似文献   

8.
9.
10.
Since LTR retrotransposons and retroviruses are especially prone to regional duplications and recombination events, these viral-like systems may be especially conducive to the evolution of closely spaced combinatorial regulatory motifs. Using the Drosophila copia LTR retrotransposon as a model, we show that a regulatory region contained within the element's untranslated leader region (ULR) consists of multiple copies of an 8 bp motif (TTGTGAAA) with similarity to the core sequence of the SV40 enhancer. Naturally occurring variation in the number of these motifs is correlated with the enhancer strength of the ULR. Our results indicate that inter-element selection may favor the evolution of more active enhancers within permissive genetic backgrounds. We propose that LTR retroelements and perhaps other retrotransposons constitute drive mechanisms for the evolution of eukaryotic enhancers which can be subsequently distributed throughout host genomes to play a role in regulatory evolution.  相似文献   

11.
12.
13.
Experimental investigations of eukaryotic enhancers suggest that multiple binding sites and trans-acting regulatory factors are often required for wild-type enhancer function. Genetic analysis of the stripe 2 enhancer of even-skipped (eve), an important developmental gene in Drosophila, provides support for this view. Given the importance of even-skipped expression in early Drosophila development, it might be predicted that many structural features of the stripe 2 enhancer will be evolutionarily conserved, including the DNA sequences of protein binding sites and the spacing between them. To test this hypothesis, we compared sequences of the stripe 2 enhancer between four species of Drosophila: D. melanogaster, D. yakuba, D. erecta and D. pseudoobscura. Our analysis revealed a large number of nucleotide substitutions in regulatory protein binding sites for bicoid, hunchback, Kruppel and giant, as well as a systematic change in the size of the enhancer. Some of the binding sites in D. melanogaster are either absent or modified in other species. One functionally important bicoid-binding site in D. melanogaster appears to be recently evolved. We, therefore, investigated possible functional consequences of sequence differences among these stripe 2 enhancers by P-element-mediated transformation. This analysis revealed that the eve stripe 2 enhancer from each of the four species drove reporter gene expression at the identical time and location in D. melanogaster embryos. Double staining of native eve protein and transgene mRNA in early embryos showed that the reporter gene mimicked native eve expression and, in every case, produced sharply defined stripes at the blastoderm stage that were coincident with eve stripe 2 protein. We argue that stripe 2 eve expression in Drosophila evolution can be viewed as being under constant stabilizing selection with respect to the location of the anterior and posterior borders of the stripe. We further hypothesize that the stripe 2 enhancer is functionally robust, so that its evolution may be governed by the fixation of both slightly deleterious and adaptive mutations in regulatory protein binding sites as well as in the spacing between binding sites. This view allows for a slow but continual turnover of functionally important changes in the stripe 2 enhancer.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号