共查询到20条相似文献,搜索用时 78 毫秒
1.
Android系统是市场占有率最高的移动端操作系统,然而Android系统上的恶意应用种类和数量疯狂增长,对用户构成极大的威胁,因此对Android系统恶意软件检测方法的研究具有非常重要的意义.分析Android系统的安全机制,介绍Android恶意软件的分类,总结恶意软件的攻击技术,研究目前的检测方法,比较各类方法的... 相似文献
2.
3.
机器学习为恶意软件检测提供了一种新的视角,它可以从大量的样本中自动学习和提取特征,然后使用这些特征进行预测。通过对Android系统的权限、API调用以及动态行为等方面进行深入的分析,研究人员已经成功地发现了许多与恶意软件相关的显著特征。对Android恶意软件的特征进行了深入的分析,探讨几种主流的机器学习算法,并对它们的性能进行了对比。研究结果表明,该算法在检测Android恶意软件时可以提高实时性和准确性,从而提高了检测的精确性和效率。 相似文献
4.
针对Android恶意软件泛滥的局面,提出了一种基于行为的恶意软件动态检测的方法。首先,综合收集软件运行时的动态信息,包括软件运行时系统的信息和软件的内核调用信息,并将内核调用序列截断成定长短序列的形式。其次,将各方面信息统一为属性、属性值的形式。以信息增益作为指标,选用CA.5算法筛选出信息增益高、作用不重叠的属性,并依据信息增益的大小为各属性正比分配权重因子。最后,用K最近邻算法完成机器学习,识别出与样本类似的恶意软件,并将未知类型的软件标记为疑似恶意。实验结果表明,该方法识别率高、误报率低。通过增大学习样本库,识别的效果可以进一步提高。 相似文献
5.
Android应用普遍具有比所属类型更多的功能,需要获取更多的权限,过多的权限可能带来一定的安全隐患。针对这类问题,提出一种基于元信息的Android恶意软件检测方法。首先,通过对Android应用程序描述进行LDA主题提取,实现数据降维,使用K-means聚类算法按照功能类型对应用程序分组;然后,对属于同一功能类型的所有应用程序提取其权限信息,以权限特征为研究对象,使用KNN算法进行Android恶意软件的分类检测。实验结果获得94.81%的平均准确率,证明了方法的有效性和高准确率。 相似文献
6.
随着Android操作系统的广泛应用,基于Android平台的应用程序的数量日益增长。如何有效地识别恶意软件,对保护手机的安全性至关重要。提出了基于权限和API特征结合的Android恶意软件检测方法,该方法通过反编译apk文件来提取权限特征和API特征,并将两者相结合作为一个整体的特征集合。在此基础上,采用分类算法进行恶意软件的甄别。实验结果表明,该方法的判别准确率高于权限集合或API集合单独作为特征的判别方法,从而能更加有效地检测Android恶意应用程序。 相似文献
7.
传统的基于权限的Android恶意软件检测方法检测率较高,但存在较高的误报率,而基于函数调用的检测方法特征提取困难,难以应用到移动平台上。因此,在保留传统权限特征的基础上,提出了以权限和资源文件多特征组合方式的朴素贝叶斯检测方法,该方法所选特征提取简便,且具有较低的误报率,有效弥补传统检测方法的不足。实验从4 396个恶意样本和4 500个正常样本中随机抽取5组恶意样本和5组正常样本集,分别作了基于权限和基于多特征的对比实验。实验结果表明,与基于权限的分类方法相比,基于多特征的分类方法能显著地降低误报率,因此基于多特征的检测方法效果更优。 相似文献
8.
Android由于其广泛的普及率使得其平台上的恶意软件数量不断增加,针对目前大部分方法采用单一特征和单一算法进行检验,准确率不高的不足,提出了一种基于多特征与Stacking算法的静态检测方法,该方法能够弥补这两方面的不足. 首先使用多种特征信息组成特征向量,并且使用Stacking集成学习算法组合Logistic,SVM,k近邻和CART决策树多个基本算法,再通过训练样本进行学习形成分类器. 实验结果表明,相对于使用单一特征和单一算法其识别准确率得到提高,可达94.05%,该分类器对测试样本拥有较好的识别性能. 相似文献
9.
基于签名与数据流模式挖掘的Android恶意软件检测系统 总被引:1,自引:0,他引:1
随着Android软件开发和维护的不断增多,以及恶意软件的抗检测能力逐渐增强,主流的静态检测方法开始面临一些问题:签名检测虽然检测速度快,但是对代码混淆、重打包类的恶意软件的检测能力不强;基于数据流的检测方法虽然精度高,但检测效率低。针对上述技术存在的缺点,提出了一种混合型静态检测系统。该系统改进了多级签名检测方法,通过对method与class签名进行多级匹配,提高了对代码混淆类恶意软件的检测能力。系统还改进了传统数据流分析技术,通过数据流模式挖掘,找出恶意软件频繁使用的数据流模式,省去了人工确认环节,提高了数据流分析的自动化程度与效率。两种技术的结合使得系统在检测精度与效率两方面达到一个合理的折中点。实验结果表明,该系统对于代码混淆和重打包的恶意软件具有较好的检测能力,对主流恶意软件的检测精确度达到88%。 相似文献
10.
11.
针对Android恶意软件检测,通常仅有检测结果缺乏对其检测结果的可解释性.基于此,从可解释性的角度分析Android恶意软件检测,综合利用多层感知机和注意力机制提出一种可解释性的Android恶意软件检测方法(multilayer perceptron attention-method, MLP_At).通过提取Android恶意软件的应用权限和应用程序接口(application programming interface, API)特征来进行数据预处理生成特征信息,采用多层感知机对特征学习.最后,利用BP算法对学习到的数据进行分类识别.在多层感知机中引入注意力机制,以捕获敏感特征,根据敏感特征生成描述来解释应用的核心恶意行为.实验结果表明所提方法能有效检测恶意软件,与SVM、RF、XGBoost相比准确率分别提高了3.65%、3.70%和2.93%,并能准确地揭示软件的恶意行为.此外,该方法还可以解释样本被错误分类的原因. 相似文献
12.
13.
本文构建的静态检测系统主要用于检测Android平台未知恶意应用程序.首先,对待检测应用程序进行预处理,从Android Manifest.xml文件中提取权限申请信息作为一类特征属性;如待检测应用程序存在动态共享库,则提取从第三方调用的函数名作为另一类特征属性.对选取的两类特征属性分别选择最优分类算法,最后根据上述的两个最优分类算法对待检测应用程序的分类结果判定待检测应用程序是否为恶意应用程序.实验结果表明:该静态检测系统能够有效地检测出Android未知恶意应用程序,准确率达到95.4%,具有良好的应用前景. 相似文献
14.
15.
融合多特征的Android恶意软件检测方法 总被引:1,自引:0,他引:1
针对当前基于机器学习的Android恶意软件检测方法特征构建维度单一,难以全方位表征Android恶意软件行为特点的问题,文章提出一种融合软件行为特征、Android Manifest.xml文件结构特征和Android恶意软件分析经验特征的恶意软件检测方法。该方法提取Android应用的Dalvik操作码N-gram语义信息、系统敏感API、系统Intent、系统Category、敏感权限和相关经验特征,多方位表征Android恶意软件的行为并构建特征向量,采用基于XGBoost的集成学习算法构建分类模型,实现对恶意软件的准确分类。在公开数据集DREBIN和AMD上进行实验,实验结果表明,该方法能够达到高于97%的检测准确率,有效提升了Android恶意软件的检测效果。 相似文献
16.
Android恶意软件特征研究 总被引:2,自引:0,他引:2
智能手机的广泛应用导致手机恶意软件的数量急速增加,尤其是近几年,基于Android操作系统的手机在智能手机市场占据主导地位,针对Android系统的恶意软件数量快速增加。手机恶意软件主要收集手机用户地理位置、语音通信、短信等个人隐私信息,或进行恶意扣费、耗费系统资源等行为,给用户自身和手机系统带来很大危害。准确分析恶意软件行为特征可以为后续清除恶意软件提供有力依据。传统的恶意软件分析技术主要包括静态分析与动态分析,文中介绍了当前存在的一些手机恶意软件分析检测技术及其缺陷,并从安装、激活、恶意负载三方面对已知Android恶意软件主要行为特征进行详细分析。 相似文献
17.
智能手机的普及极大地刺激了恶意软件的广泛传播,Android平台因其巨大的市场占有率和开源特性,已成为攻击者首选的攻击目标。针对传统的基于签名的反病毒软件仅能检测已知恶意软件的缺点,文章提出基于沙盒的Android恶意软件动态分析方案,用于有效地分析未知恶意软件的行为。文章通过在虚拟化软件Oracle VM VirtualBox中安装Android x86虚拟机的方式来实现Android沙盒,利用VirtualBox提供的命令行工具来控制Android沙盒。Android应用程序通过调用相应系统API来完成对应的行为,文中方案通过在应用程序包中插入API监视代码的方法监测Android应用程序调用的系统API,并通过脚本程序向Android沙盒发送不同的用户事件流来模拟用户对应用程序的真实操作,控制Android应用程序在沙盒中自动运行,实验证明文中提出的方法切实可行。 相似文献
18.
近几年,Android平台的恶意软件数量几乎以几何式的速度增长,故提出一种恶意软件检测方法是必要的.本文利用现如今疯涨的Android恶意样本量和机器学习算法建立分类预测模型实现对恶意软件的静态检测.首先,通过反编译APK文件获取AndroidManifest.xml文件中权限特征,baksmali工具反编译class.dex成smali文件得到危险API特征.然后运用机器学习中多种分类和预处理算法比较每一特征和联合特征检测的准确率.实验结果表明,联合特征检测准确率高于单独特征,准确率达到97.5%. 相似文献
19.
20.
随着Android系统的广泛应用,Android平台下的恶意应用层出不穷,并且恶意应用躲避现有检测工具的手段也越来越复杂,亟需更有效的检测技术来分析恶意行为。文中提出并设计了一种基于N-gram的静态恶意检测模型,该模型通过逆向手段反编译Android APK文件,利用N-gram技术在字节码上提取特征,以此避免传统检测中专家知识的依赖。同时,该模型使用深度置信网络,能够快速而准确地学习训练。通过对1267个恶意样本和1200个善意样本进行测试,结果显示模型整体的检测准确率最高可以达到98.34%。实验进一步比较了该模型和其他算法的检测结果,并对比了相关工作的检测效果,结果表明该模型有更好的准确率和鲁棒性。 相似文献