首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work describes a new technique to synthesize aligned YBa2Cu3O7- x and Ag─YBa2Cu3O7- x superconducting composites from Ba- and Cu-deficient compositions (relative to YBa2Cu3O7- x ) plus BaCuO2. For YBa2Cu3O7- x , high transition temperature midpoint Tc (91 K), temperature of zero resistivity T 0 (90 K), and critical current density Jc (>3000 A°Cm−2 at 77 K) were achieved by using this technique. This procedure provides the potential for using a reliable and reproducible densification and alignment technique alternative to partial or full melting. The composite is highly aligned, with an average grain size of ∼1 to 2 mm and domains of width greater than 5 mm. The initial phase assemblage consists of YBa2Cu3O7- x (123) as the major phase plus YBa2CuO5 (211) CuO as minor phases. The BaCuO2 is added to the Ba- and Cu-deficient starting composition in order to assist in the formation of a CuO-rich liquid as well as to compensate for the Ba and Cu deficiences in 123. Since the liquid forms at ∼900°C and is compatible with 123, it can be used to facilitate alignment of 123 at ∼930°C. The addition of Ag to the system results in eutectic formation with the (solidified) liquid, substantial filling of the pores during sintering, and improved alignment.  相似文献   

2.
The phase diagram for the CuO-rich part of the La2O3─CuO join was redetermined. La2Cu2O5 was found to have a lower limit of stability at 1002°± 5°C and an incongruent melting temperature of ∼1035°C. LagCu7O19 had both a lower (1012°± 5°C) and an upper (1027°± 5°C) limit of stability. Subsolidus phase relations were studied in the La2O3─CuO─CaO system at 1000°, 1020°, and 1050°C in air. Two ternary phases, La1.9Ca1.1Cu2O5.9 and LaCa2Cu3O8.6, were stable at these temperatures, with three binary phases, Ca2CuO3, CaCu2O3, and La2CuO4. La2Cu2O5 and La8Cu7O19 were stable only at 1020°C, and did not support solid-solution formation.  相似文献   

3.
The rates of forming the superconducting YBa2Cu3Ox phase during the calcination of the Y2O3, BaCO3, and CuO powder mixture at 790° and 850°C are considerably enhanced when an inert atmosphere of N2 or He is used instead of O2. Sintering in an inert atmosphere also produces higher density and larger grain size than in O2. These results are consistent with the possibility of rapid atomic diffusion in tetragonal YBa2Cu3Ox due to either high oxygen vacancy concentration or expanded lattice in an inert atmosphere.  相似文献   

4.
Phase equilibria of the La2O3-SrO-CuO system have been determined at 950°C and 10 kbar (1 GPa). Stable phases at the apices of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2CuO4 in the LaO1.5-CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO-SrO binary. The La2-xSr x CuO4-δ solid solution is stable where 0.0 ≤ x ≤ 1.3, the La2-xSr1+xCu2O6+δ solid solution is stable where 0.0 ≤ x ≤ 0.2, the La8-xSr x Cu8O20-δ solid solution is stable where 1.3 ≤ x ≤ 2.7, the La x Sr14-x-Cu24O41 solid solution is stable where 0 ≤ x ≤ 6, and the La1+xSr2-xCu2O5.5+δ phase is stable where 0.04 ≤ x ≤ 0.16. The La2O3-SrO-CuO phase diagram at 950°C and 10 kbar is almost identical to that determined by other authors at 950°C and 1 atm, in terms of phase stability and solid-solution ranges.  相似文献   

5.
The decomposition products of YBa2Cu3O7-x depend on the composition of the molten chloride salt for exposure at 1173 K in air. The presence of dichloride salts such as CuCl2, CaCl2, or MgCl2 promote formation of CuO, Cu2Y2O5, and loss of barium to the chloride salt as BaCl2. Salts based on BaCl2 or containing LiCl result in YBa2Cu3O7-x decomposition products of Y2BaCuO5, CuO, and BaCl2. High barium activity in the salt supports formation of the Y2BaCuO5 phase and reaction of CO2 with the salt producing BaCO3. Decomposition is most sluggish in binary NaCl-KCl salts where minimal amounts of reaction or decomposition products are observed.  相似文献   

6.
In the synthesis of the superconducting compound Ba2YCu3O7-x from a stoichiometric mixture containing BaCO3, Y2O3, and CuO In air, a low-melting liquid phase is formed at about 890°C. The liquid phase was identified as a ternary eutectic located within the compatibility triangle Ba2YCu3O7-x–BaCuO2–CuO. The implication of this finding for the processing of Ba2YCu3O7-x is discussed.  相似文献   

7.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

8.
Concurrent thermogravimetry (TG) and evolved-gas analysis (EGA) were done for YBa2Cu3O7-z and LaBa2Cu3-O7-z superconductors. The sample weights were monitored by thermobalance and the evolved O2 and CO2 species were monitored by quadruple mass spectrometer (QMS). No diffraction peak for the impurity phase containing a carbonate group was observed in the X-ray diffraction patterns for these samples, but the release of CO2 was detected by EGA. CO2 gas began to evolve from YBa2Cu3O7-z at 543°C and from LaBa2Cu3O7-z at 692°C. Preparation of high-quality YBa2Cu3O7-z and LaBa2Cu3O7-z superconductors is discussed on the basis of results of these thermal analyses.  相似文献   

9.
Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd2O3 corners have been carried cut at 950°C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high- T c superconductor phase, and has the formula Ba2–xNd1+xCu3O6+z, where × < ≅ 0.7. At the ideal compound stoichiometry of Ba2NdCu3O6+z, the transformation from the high- T c orthorhombic to tetragonal phase occurs at 550°–575°C in air. This temperature varies as a function of composition, and at x ≅ 0.2 to 0.3 it occurs at 950°C. The second solid solution is the non-superconducting "brown phase" represented by Ba2+2x-Nd4–2xCu2–xO10–2z 0 ≤ x ≤ 0.1. Preliminary phase diagrams of the BaO–Nd2O3 and Nd2O3–CuOx systems are also presented. Standard X-ray diffraction patterns of BaNd2–CuO5 and (Nd1.9Ca0.1)CuO4–z are provided.  相似文献   

10.
The Ba-doped superconducting (Bi,Pb)2Sr2- x Ba x Ca2Cu3O y and (Bi,Pb)2Sr2Ca2- x Ba x Cu3O y (0 ≦ x ≦ 1.0) were prepared by using a melt-quenching method, and the effect of Ba additions on the glass-forming ability and the crystalline phase was examined. The glass-forming ability was not improved by substitution of Ba for Sr or Ca, and particularly BaPbO3 as well as CaO was observed in the melt-quenched sample of (Bi,Pb)2SrBaCa2Cu3O y . BaPbO3 crystals were precipitated in all glass-ceramics with Ba substituted for Sr or Ca. The partial substitution of Ba substituted for Sr was effective for the formation of the high- T c phase, and (Bi,Pb)2Sr1.4Ba0.6Ca2Cu3O y glass-ceramics obtained by annealing at 830°C for 100 h exhibited superconductivity with a T c of 103 K, although BaPbO3 and the low- T c phase were still largely present.  相似文献   

11.
The phase diagram of the BaO(BaCO3)-CaO-CuO system, especially in the barium-rich region at 900°C in air, was studied. Two new different oxycarbonates were observed: Ba8Ca16/15Cu64/15O11.20(CO3)2.66and a solid-solution series with a chemical composition of Ba2Ca x + y Cu1+( x /2)- y O2+delta(CO3)1- z (where 0 ≤ to x ≤ to 2/39 and 0 ≤ to y ≤ to 16 x /5). The oxycarbonate solid solution was formed in a region of the compositional triangle Ba:Ca:Cu (in moles) = (2:0:1)-(39:1:20)-(65:7:28). The solid-solution structure had P 4/ mmm symmetry, with lattice parameters a similar/congruent a pand c similar/congruent 2 a p, where a prepresents the perovskite cell. The Ba8Ca16/15Cu64/15O11.20(CO3)2.66compound, which had Pm 3 m symmetry with a lattice parameter a = 0.8116(2) nm, had no chemical-solubility range.  相似文献   

12.
The response of ceramic superconductors and ceramic composites to compressive stresses at high temperatures has been examined. Monolithic YBa2Cu3O7-δ and composite YBa2Cu3O76/Ag were tested at constant true strain rates from 10-6 to 10-3 s-1 at temperatures from 800° to 950°C. Fine-grained monolithic YBa2Cu3O7-δ appears to have a regime of superplastic deformation between temperatures of 850° and 950°C at strain rates from 10-6 to 10-4 S-1. The addition of 20 vol% Ag to a coarser-grained material enhances the ductility of the ceramic and lowers the flow stress by a factor of 3 to 10. However, there is no evidence of superplasticity in the composite material in the range of temperature and strain rate where it was tested.  相似文献   

13.
Bi2Sr2Ca2Cu2O8±δ-type compound thick films were exposed to oxygen-argon-gas mixtures (1% to 20% oxygen gas) at elevated pressures (up to 207 MPa) and temperatures (500° to 940°C) for times ranging from 5 to 96 h. At a sufficiently high oxygen fugacity and temperature, Bi2Sr2Ca1Cu2O8±δ decomposed via a solid-state reaction. Room-temperature X-ray diffractometry and electron probe microanalysis of decomposed films revealed the presence of Bi2(Sr,Ca)2-Cu1O6±θ ro-type compound, Bi2Sr2,Ca1O8±δ-type compound, and CuO. Bi2Sr2Ca1Cu2O8±δ decomposition was accompanied by a modest weight gain, which was consistent with an oxidation reaction. The solid-state decomposition reaction could be reversed by heat treatment of decomposed films at 860°C in pure, flowing oxygen at ambient pressure.  相似文献   

14.
The formation of spherical pores and regions free of Y2BaCuO5 (2-1-1) has been studied by melt processing Y1.6Ba2.3Cu3.3O x: in two different atmospheres (air and oxygen). When the sintered Y1.6Ba2.3Cu3.3O x specimens are melted at 1050°C, many spherical pores form in the melted specimens. During the subsequent cooling, the pores are filled by liquid flow and finally solidified to Y2BaCuO5-free regions. Melt processing in an oxygen atmosphere produces more pores and regions free of 2-1-1 than in air. Because peritectic melting of YBa2Cu3O7-y in an oxygen atmosphere produces more oxygen gas than that in air, the formation of the pores and Y2BaCuO5-free regions is suggested to be attributed to the oxygen evolution during the peritectic melting of YBa2Cu3O7−y  相似文献   

15.
The dependence of the degree of nonstoichiometry of YBa2Cu307–x (123) on temperature and oxygen pressure has been determined by thermogravimetric analysis (TGA) in the temperature range 400° to 950°C and the oxygen pressure range 10–6 to 1 atm (1 atm = 105 Pa). The nature of the decomposition of 123 in the temperature range 750° to 950°C and the oxygen pressure range 10–6 to 10–2 atm has been determined by TGA and X-ray diffractometry (XRD). As the oxygen pressure decreases, the decomposition of 123 follows the sequence 123→ Y2BaCuo5 (211) + BaCuO2° Cu2O→ 211 ° BaCuO2° BaCu2O2→ 211 ° YBa3Cu2Ox (132) ° BaCu2O2→ 211 ° BaCu2O2°BaO. The incongruent melting temperatures have been determined in the oxygen pressure range 10–6 to 1 atm by differential thermal analysis, and the phases formed on solidification have been identified by XRD. The stability diagram for the composition 123 has been constructed.  相似文献   

16.
Fine, homogeneous, dual-phase Ag–YBa2Cu3O7– x composite powders were prepared by a simple colloidal sol–gel coprecipitation technique that was previously used for synthesis of single-phase YBa2Cu3O7– x . Samples containing up to 60 wt% silver were synthesized. Silver neither reacted with nor degraded the YBa2Cu3O7– x . The presence of silver was found to aid the oxygenation of the precursor during calcination to form orthorhombic YBa2Cu3O7– x . Measurements made by ac magnetic susceptibility showed no significant degradation in transition temperature for samples containing up to 40 wt% silver.  相似文献   

17.
The formation mechanism of the synthesis of MoO3-doped YSr2Cu3O y powders using the citrate process was investigated. It was shown that the precursor phase (Sr1- x Y x )14Cu24O41 played a crucial role in forming the superconducting phase. It was found that the precursor phase (Sr1- x Y x )14Cu24O41 interacted with water and decomposed when it was heavily milled and heated.  相似文献   

18.
Hot isostatic pressing (HIP) can be used to produce fully dense shapes of high-temperature ceramic superconductors. Densification modeling of monolithic YBa2Cu3O7-δ and the composite YBa2Cu3O7-δ/Ag systems allows an understanding of the HIP process and has led to the development of successful protocols for HIP of these materials. Ag metal is the best encapsulation material found for both systems. HIP of monolithic YBa2Cu3O7-δ requires a slow ramp of pressure in order to prevent decomposition into more basic oxides such as Y2BaCuO5 and CuO. HIP of composite YBa2Cu3O7-δ/Ag requires careful powder processing to obtain dense material with a fine dispersion of Ag.  相似文献   

19.
X-ray diffraction patterns show that most samples of Y1-x PrxBa2Cu4O8 examined in the present study contained a single YBa2 Cu4O8 (1-2-4) superconductive phase for x<0.7.Lattice parameters a and b increased with Pr concentration, suggesting that most of the Pr is trivalent in Y1-x Prx-Ba2Cu4O8. The zero-resistance temperature, T co, decreases monotonically from 80 K at x=0 to 12 K at x=0.65, and superconducting transition widths tend to broaden for x>0. The room-temperature resistivity changes linearly until x=0.7 and increases abruptly at x=-0.75. The critical concentration, xcr, thus was estimated to be 0.7. The effective magnetic moments of Pr in Y 1-x PrxBa2Cu4O8 were 3.63., 3.35, and 3.23, μB for x=0.2, 0.4 and 0.6, respectively. In the R0.8 Pr0.2Ba2Cu4O8 system, the depression of Tc weakly depends on the ionic radius of rare-earth elements. Similarities and differences between Y 1-x PrxBa2Cu4O8 and Y1-xPrx-Ba2Cu3O7-y also were noted and are discussed in this paper.  相似文献   

20.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号