首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用波束分解算法,对海洋表面微波散射进行数值分析.通过把一个大的照射波束分解成许多小波束,单独求解这些小波束的散射问题,然后合成大波束的散射结果.这样可以降低计算机的内存要求,是解决电大目标分析的-种有效方法.理论公式基于单积分方程矩量法,采用RWG矢量三角基函数.对这种算法的精度问题进行了分析,后对海洋表面散射进行模拟.  相似文献   

2.
针对利用射线追踪方法计算分层介质目标散射时由于海量射线导致的资源和效率瓶颈问题,提出了改进的蒙特卡洛法和自适应射线细分法,实现对超电大分层介质目标高频电磁散射的快速计算.改进的蒙特卡洛法基于射线在介质分界面上反射和折射的能量分布,将射线分裂等效为按照特定概率发生反射或折射,射线追踪过程中射线数保持不变,而自适应射线细分法通过选择稀疏的初始射线,并根据目标结构和材质的变化自动细分加密,在保证计算精度的同时最大程度降低射线数.仿真试验与参考结果对比验证了本文方法的精确和高效,并分析了两种方法的优缺点,给出了适用范围以及在实际工程应用中的建议.  相似文献   

3.
三维大纵横比目标散射的快速精确求解   总被引:5,自引:4,他引:1  
采用积分方程法严格求解三维大纵横比目标的电磁散射。在积分方程法的迭代求解中用快速我极子法(FMM)加速矩阵与矢量的相乘计算,同时运用快速傅里叶变换(FFT)进一步提高快速多极子方法中的转换预计算,数值结果表明:这种快速多极子法-快速傅立叶变换方法(FMM-FFT)特别适合于三维大纵横比目标的散射求解。  相似文献   

4.
Forward-backward method for scattering from dielectric rough surfaces   总被引:1,自引:0,他引:1  
The iterative forward-backward (FB) method is a recently proposed efficient technique for numerical evaluation of scattering from perfectly conducting rough surfaces. Extension of the method to include scattering from imperfect conducting surfaces, with a high imaginary part of the complex dielectric constant, has also been proposed. The FB method is further generalized to analyze scattering from dielectric rough surfaces with arbitrary complex dielectric constant. Electric and magnetic equivalent surface currents are split into forward and backward components and equations governing these current components are obtained. As a solution, an iterative scheme is proposed and its convergence rate is analyzed. Finally, the effectiveness of the method is assessed by comparing the obtained scattering results with "exact" ones, computed by employing the usual method of moments (MoM).  相似文献   

5.
分层粗糙面下方介质目标散射的快速算法   总被引:2,自引:0,他引:2  
为快速获取分层粗糙面与下方介质目标的复合电磁散射特性,提出了一种基于前后向迭代算法(FBM)和双共轭梯度法(Bi-CG)的快速互耦迭代算法。推导了一维分层粗糙面与下方介质目标(二维散射问题)的耦合边界积分方程组,用FBM求解分层粗糙面的表面积分方程,而用Bi-CG求解目标的表面积分方程,目标和粗糙面的相互耦合作用通过更新两方程的激励项来迭代求解。应用该算法计算了下方存在介质目标时双层介质粗糙面的双站散射系数,与传统矩量法得到的结果相吻合,验证了该算法的正确性;分析了不同极化波入射时该算法的收敛性,讨论了目标尺寸和位置变化对双站散射系数的影响。  相似文献   

6.
The surface integral representations are derived for electromagnetic wave scattering from dielectric bodies. Several kinds of integral equations are given for dielectric cylinders immersed in an obliquely incident wave. The interior resonant solutions, the cause of erroneous solutions, accompanied with the equations presented here and the removal of these solutions are briefly discussed.  相似文献   

7.
This letter presents a fast algorithm for electromagnetic scattering by buried conducting plates of large size and arbitrary shape using the conjugate gradient (CG) method combined with the fast Fourier transform (FFT). Due to the use of FFT in handling the cyclic convolutions related to Toeplitz matrices, the Sommerfeld integrals' evaluation for the buried scattering problem, which is usually time consuming, has been reduced to a minimum. The memory required for this algorithm is of the order N-the number of unknowns-and the computational complexity is of order NiterNlogN (Niter is the iteration number Niter≪N for large problems)  相似文献   

8.
The problem of electromagnetic scattering from a conducting or dielectric rough surface with arbitrary shape is studied. An exact solution, using a differential method, is provided for a plane wave with one-dimensional irregularity of the interface. The problem is reduced to the resolution of a linear system of partial differential equations with constant coefficients, and to the computation of eigenvalues and eigenvectors of a truncated infinite matrix. Numerical application is made to show the angular distribution of energy density in the case of an arbitrary profile of the scattering surface and its evolution when the nonperiodic profile tends to become periodic. The near field is computed on the interface and its enhancement in the illuminated region is observed. It increases with the height of the irregularity and with the frequency  相似文献   

9.
Bistatic specular scattering from rough dielectric surfaces   总被引:4,自引:0,他引:4  
An experimental investigation was conducted to determine the nature of bistatic scattering from rough dielectric surfaces at 10 GHz. This paper focusses specifically on the dependence of coherent and incoherent scattered fields on surface roughness for the specular direction. The measurements, which were conducted for a smooth surface with ks<0.2 (where k=2π/λ and s is the RMS surface height) and for three rough surfaces with ks=0.5, 1.39, and 1.94, included observations over the range of incidence angles from 20° to 65° for both horizontal and vertical polarizations. For the coherent component, the reflectivity was found to behave in accordance with the prediction of the physical optics model, although it was observed that the Brewster angle exhibited a small negative shift with increasing roughness. The first-order solution of physical optics also provided good agreement with observations for hh-polarized incoherent scattering coefficient, but it failed to predict the behavior of the vv-polarized scattering coefficient in the angular range around the Brewster angle. A second-order solution is proposed which appears to partially address the deficiency of the physical optics model  相似文献   

10.
A single surface integral equation for problems involving electromagnetic scattering from homogeneous dielectric bodies illuminated by time-harmonic sources is developed via the equivalence principle. The equation is formulated in terms of an equivalent electric current defined at the body surface. When allowed to radiate in a homogeneous medium having the material parameters of the exterior medium of the original problem, the electric current solution to the integral equation produces the correct scattered electric and magnetic fields external to the body.  相似文献   

11.
为进一步提高电大尺寸目标散射求解能力,采用了基于多层快速多极子方法的高阶方法.与低阶相比,该方法所需未知量数目大大减少,而计算精度不变,因而具有比传统多层快速多极子方法更高的计算效率.给出的典型计算结果充分说明了高阶多层快速多极子方法的高效性.  相似文献   

12.
一维FSS电磁散射宽带特性的快速计算   总被引:4,自引:4,他引:0  
基于渐近波形估计(AWE)技术和矩量法(MOM),快速分析了一维频率选择表面(FSS)的宽带电磁散射特性,首先采用MOM法将平面波照射下FSS的电场积分方程(EFIE)转化为关于感应电流的矩阵方程,并由该方程确定频率导数矩阵方程(MEFD);再在所考虑的频带内的某一给定频率处求解MEFD,得到给定频率处的频率导数感应电流;最后根据Pade逼近理论由给定频率处的频率导数感应电流确定周期性结构在任意频率入射波照射下的感应电流,根据FSS上的感应电流及谱域Floquet谐波模计算FSS的电磁散射宽带特性,计算结果表明,AWE能有效逼近MOM逐点扫描计算的结果,同时在计算速度上可加快十几倍。  相似文献   

13.
介质体电磁散射的偶极子模型法研究   总被引:1,自引:0,他引:1  
提出用偶极子模型法来分析介质体的电磁散射.该方法以矩量法和Schaubert-Wilton-Glisson(SWG)基函数为基础,把介质体剖分成一定数量的四面体元.在介质体内,把含有公共面的体元对等效成电偶极子;在介质体表面,把边界面及其对应的体元等效成电偶极子.当等效偶板子单元离观察点大于临界距离时,用偶极子模型法计算阻抗矩阵元素.偶极子模型法简单易操作,不仅能大幅度降低阻抗矩阵的计算时间,还简化了边界条件的处理.数值结果表明了该方法的高效性及与原方法几乎相同的计算精度.  相似文献   

14.
A FAFFA-MLFMA algorithm for electromagnetic scattering   总被引:16,自引:0,他引:16  
Based on the multilevel fast multipole algorithm (MLFMA), an efficient method is proposed to accelerate the solution of the combined field integral equation in electromagnetic scattering and radiation, where the fast far-field approximation (FAFFA) is combined with MLFMA. The translation between groups in MLFMA is expensive because spherical Hankel functions and Legendre polynomials are involved and the translator is defined on an Eward sphere with many k/spl circ/ directions. When two groups are in the far-field region, however, the translation can be greatly simplified by FAFFA where only a single k/spl circ/ direction is involved in the translator. The condition for using FAFFA and the way to efficiently incorporate FAFFA with MLFMA are discussed. Complexity analysis illustrates that the computational cost in FAFFA-MLFMA can be asymptotically cut by half compared to the conventional MLFMA. Numerical results are given to verify the efficiency of the algorithm.  相似文献   

15.
Remote sensing of soil moisture using microwave sensors require accurate and realistic scattering models for rough soil surfaces. In the past, much effort has been devoted to the development of scattering models for either perfectly conducting or homogeneous rough surfaces. In practice, however, the permittivity of most soil surfaces is nonuniform, particularly in depth, for which analytical solution does not exist. The variations in the permittivity of a soil medium can easily be related to its soil moisture profile and soil type using the existing empirical models. In this paper, analytical expressions for the bistatic scattering coefficients of soil surfaces with slightly rough interface and stratified permittivity profile are derived. The scattering formulation is based on a new approach where the perturbation expansion of the volumetric polarization current instead of the tangential fields is used to obtain the scattered field. Basically, the top rough layer is replaced with an equivalent polarization current and, using the volumetric integral equation in conjunction with the dyadic Green's function of the remaining stratified half-space medium, the scattering problem is formulated. Closed-form analytical expressions for the induced polarization currents to any desired order are derived, which are then used to evaluate the bistatic scattered fields up to and including the third order. The analytical solutions for the scattered fields are used to derive the complete second-order expressions for the backscattering coefficients as well as the statistics of phase difference between the scattering matrix elements. The theoretical results are shown to agree well with the backscatter measurements of rough surfaces with known dielectric profiles and roughness statistics  相似文献   

16.
Xia  M.Y. Chan  C.H. 《Electronics letters》2003,39(9):710-712
An efficient approach for simulation of random rough surface scattering is developed based on using a single integral equation formulation and a multilevel sparse-matrix canonical-grid method. Merits of the scheme are demonstrated using two wind-driven ocean surfaces, one which is very rough and the other large in size.  相似文献   

17.
An efficient algorithm for wave scattering from two-dimensional lossy rough surfaces is proposed. It entails the use of a single magnetic field integral equation (SMFIE) in conjunction with a multilevel sparse-matrix canonical-grid (MSMCG) method. The Rao-Wilton-Glisson (RWG) triangular discretization is adopted to better model the rough surface than the pulse basis functions used in the well-established SMCG method. Using the SMFIE formulation, only one unknown per interior edge of the triangular mesh approximating the rough surface is required, and the iterative solution to the moment equation converges more rapidly than that of the conventional coupled equations for dielectric rough surfaces. The MSMCG method extends the applicability of the SMCG method to rougher surfaces. Parallel implementation of the proposed method enables us to model dielectric surfaces up to a few thousand square wavelengths. Simulation results are presented as bistatic scattering coefficients for Gaussian randomly rough surfaces.  相似文献   

18.
传统的伪谱时域差分(PSTD)方法中不存在硬连接边界条件,基于Gao 等人的思想,在PSTD计算区域内设置8~10个网格层的连接区.通过引入加权窗函数,使得整个计算区域被有效地划分为总场区、连接区和散射场区.总场边界PSTD技术在成功地把入射波引入到PSTD计算区域内的同时,更便于复杂目标离散建模.以时域高斯脉冲为宽频带平面入射波,通过数值算例,验证了总场边界PSTD技术应用于三维大尺寸介质目标散射问题的有效性和实用性.  相似文献   

19.
Valid application of the Kirchhoff approximation (KA) for scattering from rough surfaces requires that the surface radius of curvature exceed approximately the electromagnetic wavelength /spl lambda/. Fractal surface models have characteristic features on arbitrarily small scales, thereby posing problems in application of the electromagnetic boundary conditions in general as well as in the evaluation of surface radius of curvature pertinent to KA. Experiments and numerical simulations show variations in scattering behavior that are consistent with scattering from progressively smoother surfaces with increasing wavelength, demonstrating surface smoothing effects in the wave-surface interaction. We hypothesize control of KA scattering from fractal surfaces by an effective average radius of curvature as a function of the smallest lateral scale /spl Delta/x contributing to scattering at /spl lambda/. Solution of =/spl lambda/ for /spl lambda/ is one possible method for approximating the limit of KA validity, assuming that /spl Delta/x[/spl lambda/] is known. Investigation of the validity of KA for the calculation of scattering from perfectly conducting Weierstrass-Mandelbrot and fractional Brownian process fractal surface models shows that for both models the region of applicability of KA grows with increases in /spl lambda/ and the Hurst exponent H controlling large-scale roughness. Numerical simulations using the method of moments demonstrate the dependence of /spl Delta/x on /spl lambda/ and the surface parameters.  相似文献   

20.
An efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient σ° is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号