首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divalent cations are required for two roles in prothrombin-phospholipid interaction. The first role, catalysis of a prothrombin protein transition has a reaction half-life of 100 min at 0 degrees and is a prerequisite to phospholipid binding. The binding sites required for the transition have a very low cation specificity. All di- and trivalent cations tested were effective in this role with the exception of beryllium. Barium catalyzed the transition but only at high concentrations (6.6 mM was required for half-reaction). Blood-clotting Factor X, another gamma-carboxyglutamic acid-containing protein, also undergoes a cation-catalyzed protein transition which is a prerequisite to Factor X-phospholipid binding. In both proteins, the transition can be monitored by a decrease in the protein's intrinsic fluorescence. Compared to prothrombin, the Factor X transition occurs much more rapidly, has a somewhat greater specificity for cations, and requires higher concentrations of cations. This indicates that the cation binding sites provided by gamma-carboxyglutamic acid are not completely uniform in all proteins. The second role of divalent cations in prothrombin-phospholipid interaction is in the actual protein-phospholipid binding. This interaction was studied by protein fluorescence quenching resulting from excitation energy transfer to a chromophore attached to the phospholipid membrane. Only strontium and barium satisfactorily replaced calcium in this role. A number of other cations form protein-phospholipid complexes but of the wrong structure. These cations inhibit the prothrombinase complex (Factor Xa, calcium, phospholipid, Factor V). The cation specificity for Factor X-phospholipid binding is the same as for prothrombin except that higher concentrations of cations are required. Factor Xa (generated by action of Russell's viper venom on Factor X) displayed the same calcium requirements for the protein transition and phospholipid interaction as Factor X. The cation requirements of the prothrombinase complex correlate with the cation requirements of prothrombin and Factor X-phospholipid binding. Strontium is the only cation that will singly replace calcium. Barium is ineffective alone because the concentrations required to catalyze the protein transitions cause precipitation of the phospholipid. Combination of certain other cations with barium will, however, substitute for calcium. The other cations (specifically magnesium or manganous ion) catalyze the protein transitions and barium forms the correct protein-phospholipid complexes.  相似文献   

2.
Histidine-235 of human 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase is the second basic residue in a conserved HXH motif. This residue is solvent accessible, readily reacting with the group specific reagent diethyl pyrocarbonate. Site-directed mutagenesis has been employed to substitute alanine or aspartate for H235. Characterization of the isolated H235A and H235D lyase mutants indicates that their tertiary structure is substantially intact. The mutant proteins, like the wild-type enzyme, are stoichiometrically modified by the affinity label, 2-butynoyl-CoA. Catalytic activity of the mutants is diminished by 15-fold and Km for HMG-CoA elevated approximately 4-fold in comparison with the values for wild-type enzyme. The function of H235 is suggested by investigation of the interaction of these enzymes with the dissociable divalent cation (e.g. Mg2+ or Mn2+) that is required for activity. ESR experiments show that wild-type enzyme forms a stable binary E*M complex. In contrast, H235A and H235D proteins do not efficiently form a binary complex. Significant interaction with cation (Mn2+) only occurs in the presence of the substrate analog, 3-hydroxyglutaryl-CoA. Similarly, when cation interaction is estimated in the presence of substrate using steady-state kinetic approaches, activator constants (Ka) and divalent cation Km values are measurable but are elevated by 15-90-fold over comparable estimates for the wild-type enzyme. The data confirm our earlier suggestion that both protein and substrate contribute ligands to HMG-CoA lyase's divalent cation activator. More specifically, the current observations suggest that H235 has an important function in cation binding.  相似文献   

3.
4.
In this report we address two questions regarding the regulation of phosphorylated nitrate reductase (pNR; EC 1.6.6.1) by 14-3-3 proteins. The first concerns the requirement for millimolar concentrations of a divalent cation in order to form the inactive pNR:14-3-3 complex at pH 7.5. The second concerns the reduced requirement for divalent cations at pH 6.5. In answering these questions we highlight a possible general mechanism involved in the regulation of 14-3-3 binding to target proteins. We show that divalent cations (e.g. Ca2+, Mg2+ and Mn2+) bind directly to 14-3-3s, and as a result cause a conformational change, manifested as an increase in surface hydrophobicity. A similar change is also obtained by decreasing the pH from pH 7.5 to pH 6.5, in the absence of divalent cations, and we propose that protonation of amino acid residues brings about a similar effect to metal ion binding. A possible regulatory mechanism, where the 14-3-3 protein has to be "primed" prior to binding a target protein, is discussed.  相似文献   

5.
In vitro assembly of an intermolecular purine*purine.pyrimidine triple helix requires the presence of a divalent cation. The relationships between cation coordination and triplex assembly were investigated, and we have obtained new evidence for at least three functionally distinct potential modes of divalent cation coordination. (i) The positive influence of the divalent cation on the affinity of the third strand for its specific target correlates with affinity of the cation for coordination to phosphate. (ii) Once assembled, the integrity of the triple helical structure remains dependent upon its divalent cation component. A mode of heterocyclic coordination/chelation is favorable to triplex formation by decreasing the relative tendency for efflux of integral cations from within the triple helical structure. (iii) There is also a detrimental mode of base coordination through which a divalent cation may actively antagonize triplex assembly, even in the presence of other supportive divalent cations. These results demonstrate the considerable impact of the cationic component, and suggest ways in which the triple helical association might be positively or negatively modulated.  相似文献   

6.
We recently devised three-colour flow cytometric assay for evaluating expression of CD11b on neutrophils and monocytes in circulation. Artefactual upregulation of CD11b ex vivo was minimized by cooling blood samples on ice. In this communication we further characterize the method in terms of different anticoagulants. EDTA was less optimal than ACD or heparin because (i) saturating concentrations of CD11b antibody (clone D12) were not achieved with resting cells; (ii) CD11b fluorescence intensity of synovial fluid cells, i.e., in vivo activated cells expressing CD11b at high levels, was significantly lower in EDTA plasma, and (iii) EDTA mediated more cell damage at 37 degrees C, as determined by PI staining. The fluorescence data suggested that D12 antibody binding was dependent on divalent cations. Saturating concentrations in the presence of EDTA in medium were easily obtained with synovial fluid cells and peripheral blood phagocytes activated with chemotactic peptide FMLP, suggesting that cell activation decreased cation concentrations required for D12 antibody binding. Using another CD11b antibody (2MPL19c), whose binding proved to be cation independent, it was shown that CD11b upregulation was not affected by EDTA. ACD was superior to heparin and phenylalanylprolylarginyl chloromethyl ketone (PPACK), a thrombin inhibitor, because cell counts were significantly lower in heparinized samples in cold, and in PPACK-anticoagulated samples treated with LPS at 37 degrees C. Kinetics of L-selectin shedding was similar in heparin and ACD, suggesting that cell loss did not derive from differences in cell activation. In comparison of buffy coat cell assay and whole blood assay, neutrophil CD11b expression was similar but background fluorescence was significantly higher in whole blood preparations. This implies that nonspecific antibody binding may occur more in whole blood assay, whereas in the buffy coat cell assay, sample manipulation procedures may slightly increase CD11b antibody binding, but not control antibody binding. Finally, it was confirmed that warming from 0 degrees C, but not from room temperature, to 37 degrees C increased CD11b expression significantly on neutrophils, and it was further shown that monocytes undergo similar changes. Cooling did not upregulate CD11b, and completely prevented LPS-induced upregulation. In conclusion, the results support use of ACD in evaluating CD11b expression; if EDTA is used, it is important to make sure that binding of CD11b antibody selected does not require presence of divalent cations in medium.  相似文献   

7.
The present study describes the binding to human platelet A2A adenosine receptors of the new potent and selective antagonist radioligand [3H]5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine ([3H]SCH 58261). Saturation experiments revealed that [3H]SCH 58261 labels a single class of recognition sites with high affinity (Kd = 0.85 nM), limited capacity (apparent Bmax = 85 fmol/mg of protein) and good specific binding (about 60%). [3H]SCH 58261 binding was not modulated by either the divalent cation Mg(+2) or guanine nucleotides. In competition experiments, a series of both adenosine agonists and antagonists inhibited [3H]SCH 58261 binding to A2A platelet receptors with rank order of potency and affinity similar to those observed in rat striatal membranes with the same radioligand. This confirms that the platelet A2A receptor is similar to that labeled in the brain striatum. Binding data were also found to be in good agreement with the results from functional studies such as A2A agonist-induced stimulation of adenylate cyclase or platelet aggregation inhibition. The present findings indicate that [3H]SCH 58261 is the first radioligand available for the characterization of the A2A receptor subtype in platelets.  相似文献   

8.
The multidrug efflux pump QacA from Staphylococcus aureus confers resistance to an extensive range of structurally dissimilar compounds. Fluorimetric analyses demonstrated that QacA confers resistance to the divalent cation 4',6-diamidino-2-phenylindole, utilizing a proton motive force-dependent efflux mechanism previously demonstrated for QacA-mediated resistance to the monovalent cation ethidium. Both the ionophores nigericin and valinomycin inhibited QacA-mediated export of ethidium, indicating an electrogenic drug/nH+ (n >/= 2) antiport mechanism. The kinetic parameters, Km and Vmax, were determined for QacA-mediated export of four fluorescent substrates, 4',6-diamidino-2-phenylindole, 3', 3'-dipropyloxacarbocyanine, ethidium, and pyronin Y. Competition studies showed that QacA-mediated ethidium export is competitively inhibited by monovalent cations, e.g. benzalkonium, and non-competitively inhibited by divalent cations, e.g. propamidine, which suggests that monovalent and divalent cations bind at distinct sites on the QacA protein. The quaternary ammonium salt, 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, was used as a membrane-specific fluorescence probe and demonstrated that the amount of substrate entering the inner leaflet was significantly reduced in QacA-containing strains, supporting the notion that the substrate is extruded directly from the membrane.  相似文献   

9.
Chicken liver phosphoenolpyruvate carboxykinase (PEPCK) is activated by Cr2+ as the sole activator under anaerobic conditions. PEPCK was modified with Cr3+, starting with either Cr2+ or Cr3+. Cr3+ has the distinct advantage of being a paramagnetic cation that could serve as a paramagnetic probe. Activators Mn2+, Mg2+, and Co2+ protect against Cr3+ incorporation. EPR, CD, and fluorescence studies indicate that Cr3+ was incorporated into the cation binding site of PEPCK. The water proton relaxation rate (PRR) and fluorescence binding studies showed that Cr3+(n1)-PEPCK forms enzyme-substrate complexes similar to those observed for the Mn2+(n1)-PEPCK complex (n1 represents the metal "enzyme binding site" as opposed to the metal "nucleotide binding site"). Cr3+(n1)-PEPCK requires an additional divalent cation for activity, an indication of two metal sites on PEPCK. Cr3+(n1)-PEPCK retains 15% residual activity as compared to unmodified PEPCK and demonstrates normal Michaelis-Menten kinetics. This is the first report of an active Cr3+-modified enzyme complex.  相似文献   

10.
The kinetics of saccharide binding to the treatment form of concanavalin A have been studies at pH 7.2 with the temperature-jump method. 4-Methylumbelliferyl alpha-D-mannopyranoside was used as a ligand; its fluorescence is totally quenched upon binding. A single relaxation of ligand fluorescence (tau = 20-400 ms) was observed and was investigated at three different temperatures, using kinetic titration and dilution types of experiments. The concentration dependence of the relaxation time and amplitude was consistent with a single-step bimolecular association and independent binding sites. In the temperature range 13-24 degrees C the association and dissociation rate parameters are in the range (6-10) X 10(4) M-1 s-1 and (1.4-3.2)s-1 respectively, corresponding to activation energies for the forward and reverse reactions equal to approx. 13 and 8 kcal/mol (54 and 33 kJ/mol) respectively. Two additional relaxations of protein fluorescence (3 ms and larger than 1 s at 25 degrees C) were unaffected by carbohydrate binding. Tetrameric concanavalin A shows carbohydrate binding parameters that are almost identical to those of native or derivatized dimeric concanavalin A.  相似文献   

11.
12.
BACKGROUND: The integrin family of cell-surface receptors mediates a wide variety of cell-cell and cell-extracellular matrix interactions. Integrin-ligand interactions are invariably dependent on the presence of divalent cations, and a subset of integrins contain a approximately 200 amino acid inserted (I) domain that is important for ligand binding activity and contains a single divalent cation binding site. Many integrins are believed to respond to stimuli by undergoing a conformational change that increases their affinity for ligand, and there is a clear difference between two crystal structures of the CD11b I domain with different divalent cations (magnesium and manganese) bound. In addition to the different bound cation, a 'ligand mimetic' crystal lattice interaction in the CD11b I domain structure with bound magnesium has led to the interpretation that the different CD11b I domain structures represent different affinity states of I domains. The influence of the bound cation on I domain structure and function remains incompletely understood, however. The crystal structure of the CD11a I domain bound to manganese is known. We therefore set out to determine whether this structure changes when the metal ion is altered or removed. RESULTS: We report here the crystal structures of the CD11a I domain determined in the absence of bound metal ion and with bound magnesium ion. No major structural rearrangements are observed in the metal-binding site of the CD11a I domain in the absence or presence of bound manganese ion. The structures of the CD11a I domain with magnesium or manganese bound are extremely similar. CONCLUSIONS: The conformation of the CD11a I domain is not altered by changes in metal ion binding. The cation-dependence of ligand binding thus indicates that the metal ion is either involved in direct interaction with ligand or required to promote a favorable quaternary arrangement of the integrin.  相似文献   

13.
The conditions of nucleotide binding to native, though partly purified, Ca(2+)-ATPase from SR as well as the stoichiometry of nucleotide and strontium binding and the phosphorylation capacity was reevaluated. Binding of MgADP appeared to be aberrant whereas even high-affinity binding of [14C]-ADP took place in the absence of Mg2+. Also low-affinity ATP binding was possible in the absence of divalent cations. A heterogeneity in ADP binding compatible with a two-component model in the absence of thapsigargin was changed to an apparent homogeneity of low-affinity receptors following a mole:mole interaction of enzyme and thapsigargin. Since the affinity of both components was reduced by thapsigargin, high- as well as low-affinity ADP binding seem to be specific and probably to the substrate receptor proper. Analysis of ADP binding isotherms in the absence of Mg2+ according to a model of two independent populations of sites was compatible with a binding capacity of 8.49 +/- 0.43 nmoles/mg protein corresponding to a molecular mass of 118 +/- 6 kD per ADP site. The same total binding capacity was found for ATP. The phosphorylation capacity corresponded to more than one and less than two approximately P per two 110-kD peptides (formally one approximately P per 154 kD protein). Specific binding of Ca2+ and the congener Sr2+ to SR Ca(2+)-ATPase was compatible with their interaction with a single population of sites. The binding capacity was equal to one divalent cation per nucleotide binding peptide. The binding of one nucleotide and one divalent cation per approximately 110 kD peptide and the absence of cooperativity in divalent cation binding might imply that Ca(2+)-ATPase works as a monomer.  相似文献   

14.
Platelet membrane glycoproteins (GP) IIb/IIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann's thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and raplb is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.  相似文献   

15.
The nucleotide and divalent cation requirements of the in vitro iron-molybdenum cofactor (FeMo-co) synthesis system have been compared with those of substrate reduction by nitrogenase. The FeMo-co synthesis system specifically requires ATP, whereas both 1,N6-etheno-ATP and 2'-deoxy-ATP function in place of ATP in substrate reduction (M. F. Weston, S. Kotake, and L. C. Davis, Arch. Biochem. Biophys. 225:809-817, 1983). Mn2+, Ca2+, and Fe2+ substitute for Mg2+ to various extents in in vitro FeMo-co synthesis, whereas Ca2+ is ineffective in substrate reduction by nitrogenase. The observed differences in the nucleotide and divalent cation specificities suggest a role(s) for the nucleotide and divalent cation in in vitro FeMo-co synthesis that is distinct from their role(s) in substrate reduction.  相似文献   

16.
2-Methoxy-5-(2',3',4'-trimethoxy)-2,4,6-cycloheptatrien-1-one (MTC) is a colchicine analogue that lacks the B ring. 2-Methoxy-5-(2',4'-dimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MD) is an A-ring analogue of MTC, in which one methoxy group is replaced by a hydrogen atom. This paper describes the kinetic features of MDC binding to tubulin, and compares its behaviour with MTC to analyse the effect of the A-ring modification on the recognition process by tubulin. Binding is accompanied by a strong enhancement of MDC fluorescence and quenching of protein fluorescence. The kinetic and thermodynamic parameters were obtained from fluorescence stopped-flow measurements. The kinetics are described by a single exponential, indicating that this drug does not discriminate between the different tubulin isotypes. The observed pseudo-first-order rate constant of the fluorescence increase upon binding increases in a non-linear way, indicating that this ligand binds with a similar overall mechanism as colchicine and MTC, consisting of a fast initial binding of low affinity followed by a slower isomerisation step leading to full affinity. The K1 and k2 values for MDC at 25 degrees C were 540 +/- 65 M(-1) and 70 +/- 6 s(-1) respectively. From the temperature dependence, a reaction enthalpy change (deltaH(o)1) of the initial binding of 49 +/- 11 kJ/mol(-1) and an activation energy for the second step of 28 +/- 9 kJ/mol(-1) were calculated. Displacement experiments of bound MDC by MTC allowed the determination of a rate constant of reverse isomerisation of 0.60 +/- 0.07 s(-1) at 25 degrees C and the activation energy of 81 +/- 6 kJ/mol(-1). The overall binding constant was (6.3 +/- 0.2) x 10(4) M(-1) at 25 degrees C. Combination of these results with the kinetic parameters for association gives a full characterisation of the enthalpy pathway for the binding of MDC. The pathway of MDC is shown to differ considerably from that of MTC binding. Since its structural difference is located in ring A, this result indicates the use of ring A in the first step. The kinetics of the binding of MDC in the presence of some A-ring colchicine analogues (podophyllotoxin, 3',4',5'-trimethoxyacetophenone and N-acetylmescaline) and a C-ring analogue (tropolone methyl ether) suggest that the A and C rings are involved in the binding of MDC.  相似文献   

17.
MantATP [2'(3')-O-(-N-methylanthraniloyl)-adenosine 5'-triphosphate] was employed as a fluorescence probe of the nucleotide-binding sites of dynein from sea urchin sperm flagella. MantATP binds specifically with enhanced fluorescence (approximately 2.2-fold), homogeneous lifetime (8.4 ns), and high anisotropy (r approximately 0.38) to dynein and can be displaced by ATP and ADP added to the medium. The association constants of mantATP complexed with dynein were determined from anisotropy titration data. Using a multiple stepwise equilibrium model, the average values of the first two association constants are K1 = 2.7 x 10(5) M-1 and K2 = 1.8 x 10(4) M-1. This value of K1 is 7-8 times higher than that found previously for unsubstituted ATP, whereas K2 is little changed [Mocz and Gibbons (1996) Biochemistry 35, 9204-9211]. The lower-affinity binding sites, K3 and K4, observed previously could not be studied with mantATP within the available protein concentrations. The alpha and beta heavy chain subfractions have binding parameters similar to those of intact dynein. Formation of the stable ternary complex of mantATP with dynein and monomeric vanadate is accompanied by only a moderate increase in the binding affinities. Oligomeric vanadate reduces the binding affinities by approximately 50%. Addition of TritonX-100, methanol, or various salts changes the binding affinities by up to 50%, suggesting that the microenvironment of the nucleotide-binding sites involves significant contributions from both polar and apolar interactions. The distinct affinities of the individual binding sites are consistent with a physiological role in regulating nucleotide binding.  相似文献   

18.
We describe practical aspects of photobleaching fluorescence energy transfer measurements on individual living cells. The method introduced by T. M. Jovin and co-workers (see, most recently, Kubitscheck et al. 1993. Biophys. J. 64:110) is based on the reduced rate of irreversible photobleaching of donor fluorophores when acceptor fluorophores are present. Measuring differences in donor photobleaching rates on cells labeled with donor only (fluorescein isothiocyanate-conjugated proteins) and with both donor and acceptor (tetramethylrhodamine-conjugated proteins) allows calculation of the fluorescence energy transfer efficiency. We assess possible methods of data analysis in light of the underlying processes of photobleaching and energy transfer and suggest optimum strategies for this purpose. Single murine B lymphocytes binding various ratios of donor and acceptor conjugates of tetravalent concanavalin A (Con A) and divalent succinyl Con A were examined for interlectin energy transfer by these methods. For Con A, a maximum transfer efficiency of 0.49 +/- 0.02 was observed. Under similar conditions flow cytometric measurements of donor quenching yielded a value of 0.54 +/- 0.03. For succinyl Con A, the maximum transfer efficiency was 0.36. To provide concrete examples of quantities arising in such energy transfer determinations, we present examples of individual cell data and kinetic analyses, population rate constant distributions, and error estimates for the various quantities involved.  相似文献   

19.
The quenching of the intrinsic tryptophan fluorescence of T4-coded gene 32-protein on binding to nucleotide ligands, which was described in the preceding paper, is here exploited to measure thermodynamic parameters of the single-stranded nucleic acid-gene 32-protein interaction. It is shown that binding of small ligands follows a single site binding isotherm, with association constants increasing from approximately 20 M-1 for phosphate, to approximately 10(3) M for ribose or deoxyribose 5'-phosphate, to approximately 10(4) M-1 for mononucleotides, and to approximately 10(5) M-1 for dinucleoside monophosphates (all in 0.1 M Na+). The measured binding constants appear to be about the same for homologous ribose- and deoxyribose-containing ligands and to be independent of oligonucleotide base sequence and composition. Furthermore, beyond the dinucleotide level and up to octanucleotides, the increase in binding constant with increasing chain length is only about that expected from the statistical factor resulting from the increased number of ways a longer oligonucleotide can form a protein complex. This suggests that the basic binding unit involved in gene 32-protein associations with single-stranded nucleic acids can be approximated by a dinucleoside monophosphate. Oligonucleotides long enough to accomodate two or more protein monomers are characterized by much larger association constants, indicating that binding is cooperative in protein concentration. A cooperativity parameter (omegac) of approximately 10(3) is estimated from these data, in good agreement with that deduced from the application of ligand-perturbed helix in equilibrium coil transition calculations. Values of association constants (Kcomegac) of approximately 10(8) M-1 (in 0.1 M Na+) and site size (nc) of approximately 5 (+/-1) nucleotide residues/protein monomer are determined by the fluorescence titration technique for the cooperative binding of gene 32-protein to both poly(dA) and poly(rA); these values are also in agreement with those measured by Jensen et al. (Jensen, D.E. Kelly, R.C., and von Hippel, P.H. (1976) J. Biol. Chem. 251, 7215-7228). Possible in vivo consequences and correlations of these findings with proposed roles for gene 32-protein in replication and recombination are discussed.  相似文献   

20.
Maitotoxin (MTX) may exert its toxic effect by activating ion conductances and has been shown to elicit a fertilization-like response in Xenopus laevis oocytes. In the present study we investigated the electrophysiological response of stage V-VI Xenopus oocytes to MTX using the two-microelectrode voltage-clamp technique. Membrane voltage (Vm) measurements demonstrated that MTX (50 pM to 1 nM) depolarized the oocytes from -49+/-7 to -14+/-1 mV. Subsequent replacement of bath Na+ by the impermeant cation NMDG (N-methyl-d-glucamine) shifted Vm from -14+/-1 to -53+/-5 mV (n=29). This indicates that MTX activates a cation conductance. Indeed, current measurements at a holding potential of -60 or -100 mV showed that within 10 s of MTX application an inward current component developed which was largely abolished by extracellular Na+ removal. After a 1-min application of 1 nM MTX the NMDG-sensitive current increased more than 100-fold from 0.14+/-0.03 microA to a peak value of 21+/-3 microA (n=11). The effect of MTX was concentration dependent with an EC50 of about 250 pM but only slowly reversible. Ion substitution experiments indicated that the stimulated conductance was nonselective for monovalent cations with a slight preference for NH4+ (2.1) > K+ (1.5) > Na+ (1.0) > Li+ (0.7). Regarding divalent cations, a complex biphasic response to extracellular Na+ replacement by Ca2+ was observed, which suggests that the stimulated channels may have a small Ca2+ permeability but that exposure to high extracellular Ca2+ enhances recovery from MTX stimulation. No significant conductance for Mn2+ was observed. Application of 1 mM benzamil, 1 mM amiloride, or 100 microM 1-(beta-[3-(4-Methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) reduced the MTX-stimulated inward current by 81%, 62%, or 65%, respectively. Gd3+ had an inhibitory effect of 29% and 38% at concentrations of 10 microM or 100 microM, respectively. Flufenamic acid, niflumic acid, (RS)-(3,4-dihydro-6, 7-dimethoxyisoquinoline-1-gamma1)-2-phenyl-N,N-di-[2-(2,3, 4-trimethoxyphenyl)-ethyl]-acetamide (LOE908), and 3', 5'-dichlorodiphenylamine-2-carboxylic acid (DCDPC), known blockers of other nonselective cation channels, had no significant effect. We conclude that MTX activates a nonselective cation conductance in Xenopus oocytes. The underlying channels may be involved in changes in Vm that occur during the early stages of fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号