首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为进行液浸聚光光伏系统中液浸液体即二甲基硅油在光热条件下的老化实验研究,设计制作了气升式外环流光催化反应器。采用Fluent软件欧拉多相流模型和RNG k-ε湍流模型对反应器进行了三维全尺寸数值模拟。分析了结构参数、操作参数和硅油物性参数对反应器中气液两相流动的影响,得到反应器内循环液速和气含率等参数的分布。模拟结果与实验结果有较好的一致性。模拟结果表明:硅油黏度越小,循环液速越大,气含率越小;反应器适宜操作气速不应大于0.02 m/s;反应器最适宜高径比和环隙面积比分别为47.6和0.31~0.41。  相似文献   

2.
The hydrodynamic performance of three internal airlift reactor configurations was studied by the Eulerian–Eulerian k–ε model for a two‐phase turbulent flow. Comparative evaluation of different drag and lift force coefficient models in terms of liquid velocity in the riser and downcomer and gas holdup in the riser was highlighted. Drag correlations as a function of Eötvös number performed better results in comparison to the drag expressions related to Reynolds number. However, the drag correlation as a function of both Reynolds and Eötvös numbers fitted well with experimental results for the riser gas holdup and downcomer liquid velocity in configurations I and II. Positive lift coefficients increase the liquid velocity and decrease the riser gas holdup, while opposite results were obtained for negative values. By studying the effects of bubble size and their shape, the smaller bubbles provide a lower liquid velocity and a gas holdup. The effects of bubble‐induced turbulence and other non‐drag closure models such as turbulent dispersion and added mass forces were analysed. The gas velocity and gas holdup distributions, liquid velocity in the riser and downcomer, vectors of velocity magnitude and streamlines for liquid phase, the dynamics of gas holdup distribution and turbulent viscosity at different superficial gas velocities for different reactor configurations were computed. The effects of various geometrical parameters such as the draft tube clearance and the ratio of the riser to the downcomer cross‐sectional area on liquid velocities in the riser and the downcomer, the gas velocity and the gas holdup were explored. © 2011 Canadian Society for Chemical Engineering  相似文献   

3.
陈思维  刘德绪  龚金海 《化工学报》2015,66(7):2607-2612
针对高含硫气田集输净化系统两相湍流流动条件下缓蚀剂预膜稳定性问题,利用高温高压动态循环腐蚀反应釜实验系统,开展高含硫气田典型管流流动条件下缓蚀剂膜稳定性评价研究:当流速在6 m·s-1以下时,缓蚀剂预膜稳定性较好;当流速超过7.5 m·s-1后,缓蚀剂预膜开始出现局部破坏;当流速达9 m·s-1时,缓蚀剂膜在较高的流动剪切应力作用下已完全失效。流体动力学研究表明剪切应力为6.5 N·m-2时为缓蚀剂膜发生整体破坏的临界点。  相似文献   

4.
The kinetic aspects of the gas‐liquid‐liquid reactive extraction process for the production of hydrogen peroxide were investigated in a batch reactor. It was observed that the gas‐liquid reaction rate is strongly affected by mass transfer of oxygen across the liquid film and the reaction can be simplified to pseudo‐first order. The extraction rate is governed by both reaction and liquid‐liquid mass transfer, and is slightly lower than the reaction rate. In addition, a kinetic model of the reactive extraction process for the production of hydrogen peroxide was developed. Kinetic parameters under different conditions were determined by experiments. The data calculated from the kinetic model match experimental data well under different conditions for hydrogen peroxide production in gas‐liquid‐liquid reactive extraction.  相似文献   

5.
A two-dimensional axi-symmetric turbulent model of a particle generator with radial injection of a quenching gas was developed to gain a better understanding of the particle forming process. The model uses the Jones–Launder Low Reynolds Number (LRN) Turbulence model to calculate the fluid flow field. The evolution of the particle size distribution is calculated using the method of moments (MOM) assuming a lognormal particle size distribution and no coagulation when the gas temperature is lower than the melting point of Aluminium. The model provides information on distributions of flow, temperature and concentration fields and particle generation within the reactor as well as mixing cup data as a function of reactor length. The effect of the injection flow rate on the characteristics of the final product was studied. The model can be used to study laminar, turbulent and systems where both regimes are present.  相似文献   

6.
The paper is devoted to a theoretical analysis of the counter-current gas−liquid film flow between vertical corrugated plates. We use the Navier−Stokes equations in their full statement to describe the liquid phase hydrodynamics. For the gas phase equations, we use the Benjamin−Miles approach where the wavy liquid/gas interface is a small disturbance for the turbulent gas and where we can linearize the gas phase governing equations. We consider both the steady state and the two-periodical traveling solutions of the counter-current gas/liquid flow between the corrugated plates. The changes in the liquid film hydrodynamics with the increase in gas superficial velocity are the main interest of the investigation. What is the flooding mechanism in the case of flow between the corrugated plates and does the gas superficial velocity for the flooding depend on the wall corrugation parameters?  相似文献   

7.
The absorption of SO2 into limestone slurry containing suspended reactive particles was performed in a bubble reactor with continuous feeding of both gas and liquid phases at a constant pH and high temperature (50 °C). An absorption model with a reaction plane based on the film model was developed. The effect of limestone particle size, concentration, acetic acid additives, and inlet SO2 concentration on the concentration distribution of chemical species in the liquid film and SO2 absorption rate were simulated. Increasing the concentration of limestone slurry, adding acetic acid additives into the system or decreasing the limestone particle size or inlet SO2 concentration caused the reaction plane in the liquid film to shift towards the gas‐liquid interface. Model and experimental results were compared, and it was shown that the model fits the experimental data well.  相似文献   

8.
This article discusses the characteristics of turbulent gas–liquid flow through tubular reactors/contactors equipped with screen‐type static mixers from a macromixing perspective. The effect of changing the reactor configuration, and the operating conditions, were investigated by using four different screen geometries of varying mesh numbers. Residence time distribution experiments were conducted in the turbulent regime (4500 < Re < 29,000). Using a deconvolution technique, the RTD function was extracted to quantify the axial/longitudinal liquid‐phase dispersion coefficient. The findings highlight that axial dispersion increases with an increasing flow rate and/or gas‐phase volume fraction. However, regardless of the number and geometry of the mixing elements, reactor configuration, and/or operating conditions, the recorded liquid‐phase axial dispersion coefficients in the presence of screens was lower than that for an empty pipe. Furthermore, the geometry of the screen was found to directly affect the axial dispersion coefficient in the reactor. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1390–1403, 2017  相似文献   

9.
A packed‐bed reactor was established to study the effect of temperature on the controlled air oxidation (CAO) performance of a mixture of polypropylene and sawdust at a fixed feed gas flow rate. The reactor temperature was varied from 400 to 800 °C. Attention was focused on product distribution, compositions of liquid and gas products, and technical parameters. The chemical composition of the liquid products was analyzed by gas chromatography/mass spectrometry. The results indicated an obvious impact of the temperature on the described parameters. The increase in temperature led to the decrease in solid fraction and a convex shape curve for the gas yield as well as to a decrease of alkanes and alkenes, and favored the generation of oxygen‐containing hydrocarbons. According to criteria of CAO conversion, the optimum temperature in the primary chamber was found to be 700 °C.  相似文献   

10.
This paper examines the effect of simultaneous heat and mass transfer on the hydrogenation of cyclohexene in a trickle bed reactor with particular attention given to the problem of liquid phase evaporation and transition to the gas-phase regime of operation. The reaction rates are obtained as a function of temperature and hydrogen flow rate; the concentration of the substrate in the feed displays considerable hysteresis due to an abrupt increase of the reaction rate arising from temperature gradients within the bed and in the gas film surrounding the catalyst pellet, during the transition from the liquid to the gas-phase regime. The transition is accompanied by the change of apparent kinetics of the model reaction as well as by a change of regime and operation of the pellet. In the liquid phase a pellet originally showing inter-phase and intra-particle diffusion resistances changes into the gas-phase regime with a large resistance due to inter-phase diffusion.  相似文献   

11.
A finite volume method-based CFD model has been developed to simulate steady, turbulent, two-dimensional annular gas-liquid flow in a duct. The gas flow is treated as being equivalent to flow through a rough-walled duct. The effect of the liquid film on the gas phase is included in the form of modified wall functions which incorporate the well-known triangular relationship (Annular Two-Phase Flow, Pergamon Press, Oxford, 1970) that exists among wall shear stress, film flow rate and film thickness in annular flow. The presence of droplets is accounted for by solving an additional scalar transport equation for the mass fraction of the droplets. Entrainment and deposition of droplets are included as source term and boundary condition, respectively, in the mass fraction equation. It is shown that the resulting model, while retaining simplicity of formulation, gives good predictions of the literature data of annular flow parameters under equilibrium and non-equilibrium conditions.  相似文献   

12.
The gas and particle motions in a bubbling fluidized bed both with and without chemical reactions are numerically simulated. The solid phase is modelled as Discrete Element Method (DEM) and the gas phase is modelled as 2-D Navier-Stokes equations for 2-phase flow with fluid turbulence calculated by large Eddy simulation (LES), in which the effect of particles on subgrid scale gas flow is taken into account. The gas/particle flow structure, the mean velocities and turbulent intensities can be predicted as a function of several operating parameters (particle size, bed temperature, and inlet gas velocity). The lower the inlet gas velocity, the higher the ratio of particle collision. The distributions of the particle anisotropic velocity show that the particles have no local equilibrium, and the distribution of gas kinetic energy corresponds to the distribution of gas-particle coupling moment in the fluidized bed. An intensive particle turbulent region exists near the wall, and the gas Reynolds stress is always much higher than the particle stress. The presence of the large reactive particles in the fluidized bed may affect significantly the gas and particle velocities and turbulent intensities. The effects of the bed temperature and inlet gas velocity on the gas particle flow structure, velocity, and turbulent intensity are also studied.  相似文献   

13.
A heterogeneous fluid dynamic model has been developed to describe the complex flow structure of two-phase in bubble columns. The equation of continuity and momentum balances form the basis of the model. Coupling of the two phases occurs via an interaction force, deduced by a force balance around a single rising bubble. Multiphase flow mixing processes are taken into consideration by introducing turbulent viscosities of the two phases involved. The Simulation program was extended to reactive system, taking into account the mass balances of a second order gas-liquid chemical reaction as well as the different absorption/reaction regimes. The gas phase concentration profiles show pronounced axial and radial dependences, while the liquid phase can be regarded as a CSTR with respect to the liquid component. With reference to the gaseous component, which is being absorbed in the liquid phase, the degree of back mixing does not show CSTR behaviour as the influence of different absorption conditions in different axial and radial reactor positions is superposed on that of turbulent motion of the liquid carrier of the dissolved gaseous component.  相似文献   

14.
Adhesion between diamond films and tungsten substrates is reported as a function of the deposition processing parameters. Diamond films were grown by a hot filament method as a function of seven different processing parameters: substrate scratching prior to diamond deposition, substrate temperature, methane content of the input gas mixture, filament temperature, filament-substrate distance, system pressure, and total gas flow rate. Adhesion was measured by using a Sebastian Five A tensile pull tester. Testing was complicated by the non-uniformity of the film thickness, diamond quality, film cohesion, and surface preparation across the full substrate surface area. Various types of film failure mode were observed, which did not correlate with the film processing parameters. The measured adhesion values showed larger variations from point to point across the sample surface and from identically prepared samples than variations as a function of the film processing parameters. Weak correlations of adhesion with the processing parameters were found using statistical analysis of the results from multiple pulls on a large number of samples. The statistical results suggest that substrate preparation, gas flow rate, and gas pressure are the most important processing parameters affecting the film adhesion, while the temperature of the hot filament has little or no effect on the adhesion of the film. However, improvements in film processing and adhesion testing need to be made before true quantitative adhesion testing of high-quality diamond films can be accomplished.  相似文献   

15.
This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)used for sophorolipid(SL) production. To evaluate the role of hydrodynamics in reactor design, the comparisons between conventional fed-batch fermenter and DVDSB on the hydrodynamic behavior are predicted by the CFD methods. Important hydrodynamic parameters of the gas–liquid two-phase system such as the liquid phase velocity field, turbulent kinetic energy and volume-averaged overall and time-averaged local gas holdups were simulated and analyzed in detail. The numerical results were also validated by experimental measurements of overall gas holdups. The yield of sophorolipids was significantly improved to 484 g·L~(-1)with a 320 h fermentation period in the new reactor.  相似文献   

16.
A pseudo first-order gas absorption survey has been made of the contacting system formed when a coherent liquid jet plunges through an ambient reactive gaseous atmosphere into a bath of jet liquid. Using the hypochlorite ion catalysed reaction between pure carbon dioxide and a carbonate ion-bicarbonate ion buffer solution, the reactor has been found to be analogous to a gas sparged stirred tank contactor with the plunging jet acting as both the reactor agitator and gas bubble generator. Resolution of the gas—liquid interfacial area and rate of surface renewal absorption parameters was thus made possible. Specific interfacial areas in the range 20–110 m?1 and rates of surface renewal in the range 40–160 sec?1 for the subsurface reactor have been related to the plunging jet surface roughness and velocity or the entrainment rate of the plunging jet.  相似文献   

17.
利用Turbulent–Lehr组合模型对装配水平筛板的气升式反应器进行了计算流体力学(CFD)模拟,研究水平筛板对气含率、气泡直径、体积传质系数(kLa)和气液流速的影响。结果表明,筛板对气相的囤积作用和对液相的阻碍作用增加了反应器的整体气含率。筛板对气相的二次均布作用减弱了筛板和液面之间区域的气泡聚并过程,筛板筛孔对气泡的破碎作用产生了大量小于初始直径的气泡,增加了气泡比表面积(a);筛板对液相的阻碍作用提高了筛板附近的气–液相流动速度差,从而提高了该区域的液膜传质系数(kL),强化了反应器内的气液传质效果。  相似文献   

18.
Computational fluid dynamics (CFD) has been used as a successful tool for single-phase reactors. However, fixed-bed reactors design depends overly in empirical correlations for the prediction of heat and mass transfer phenomena. Therefore, the aim of this work is to present the application of CFD to the simulation of three-dimensional interstitial flow in a multiphase reactor. A case study comprising a high-pressure trickle-bed reactor (30 bar) was modelled by means of an Euler-Euler CFD model. The numerical simulations were evaluated quantitatively by experimental data from the literature. During grid optimization and validation, the effects of mesh size, time step and convergence criteria were evaluated plotting the hydrodynamic predictions as a function of liquid flow rate. Among the discretization methods for the momentum equation, a monotonic upwind scheme for conservation laws was found to give better computed results for either liquid holdup or two-phase pressure drop since it reduces effectively the numerical dispersion in convective terms of transport equation.After the parametric optimization of numerical solution parameters, four RANS multiphase turbulence models were investigated in the whole range of simulated gas and liquid flow rates. During RANS turbulence modelling, standard k-ε dispersed turbulence model gave the better compromise between computer expense and numerical accuracy in comparison with both realizable, renormalization group and Reynolds stress based models. Finally, several computational runs were performed at different temperatures for the evaluation of either axial averaged velocity and turbulent kinetic energy profiles for gas and liquid phases. Flow disequilibrium and strong heterogeneities detected along the packed bed demonstrated liquid distribution issues with slighter impact at high temperatures.  相似文献   

19.
To develop a new technique for separating gas mixtures via hydrate formation,a set of medium-sized experimental bubble column reactor equipment was constructed.On the basis of the structure parameters of the ex- perimental bubble column reactor,assuming that the liquid phase was in the axial dispersion regime and the gas phase was in the plug flow regime,in the presence of hydrate promoter tetrahydrofuran(THF),the rate of hydrogen enrichment for CH4+H2 gas mixtures at different operational conditions(such as temperature,pressure,concentra- tion of gas components,gas flow rate,liquid flow rate)were simulated.The heat product of the hydrate reaction and its axial distribution under different operational conditions were also calculated.The results would be helpful not only to setting and optimizing operation conditions and design of multi-refrigeration equipment,but also to hydrate separation technique industrialization.  相似文献   

20.
张芳芳  丁玉栋  朱恂  廖强  王宏  赵林林 《化工学报》2015,66(5):1760-1766
以氨基酸离子液体和乙醇胺混合水溶液为吸收剂研究逆流气体对竖直平板降膜流型转换的影响,考察了3种流型下液体流量和入口温度、气体流量和进口CO2浓度对CO2吸收性能的影响。结果表明:随着液体流量的增加,液膜呈现溪流、片状流和完整流3种流型,降膜流型转换临界流量随逆流气体流量增大而增加;溪流和片状流时CO2吸收速率随液体流量的增加而增加,但在完整流条件下基本不变;完整流下具有较高的CO2吸收速率,然而溪流下的液相传质系数最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号