首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ferroelectric glass–ceramics of composition 0.90 (Ba0.7Sr0.3) TiO3–0.10(B2O3:SiO2) (0.90 BST:0.10 BS) synthesized by sol–gel method have been used for the preparation of dielectric thick-film inks. The particle dispersion of the glass–ceramic powders in the thick-film ink formulations have been studied through rheological measurements for fabricating thick-film capacitors by screen printing technique. The thick films derived from such glass–ceramics are found to sinter at considerably lower temperatures than the pure ceramic, and exhibit good dielectric characteristics with a tunability of 32% at 1 MHz under a dc bias field of 35 kV/cm.  相似文献   

2.
The effects of heating rate on the sintering behavior and the dielectric properties of Ba0.7Sr0.3TiO3 ceramics prepared by boron-containing liquid-phase sintering were investigated. When 0.5 wt% B2O3 was added to Ba0.7Sr0.3TiO3, sintering was achieved at ∼1150°C, and the overdoped B2O3 did not form an adequate amount of liquid phase or volatilize; it remained in the samples and formed a secondary phase. A transition broadening was observed as the heating rate increased. As the heating rate increased, the Curie temperature increased and the maximum dielectric constant ( k max) at the Curie temperature decreased. This result is attributable to a decrease in the diffuseness parameter (δ) and the tetragonality ( c / a ).  相似文献   

3.
The effects of B2O3 addition on the sintering behavior and the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 (BST) ceramics were investigated. The dielectric and ferroelectric properties of a BST sample with 0.5 wt% B2O3 sintered at <1150°C were as good as those of undoped BST sintered at 1350°C, and the dielectric loss was better. When >1.0 wt% B2O3 was added to BST, the overdoped B2O3 did not form a liquid phase or volatilize; it remained in the samples and formed a secondary phase that lowered the sintering behavior and the dielectric and ferroelectric properties of the BST.  相似文献   

4.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

5.
In the present work, the sintering behaviors and dielectric properties of Ba0.60Sr0.40TiO3 (BST) ceramics with the addition of BaCu(B2O5) were investigated in detail. The results indicated that the addition reduced the sintering temperature of BST by about 500°C. It was suggested that a liquid phase BaCu(B2O5) assisted the densification of BST ceramics at lower temperatures. For a low-level BaCu(B2O5) addition (2.0 mol%), the BST sample sintered at 950°C for 5 h displayed good dielectric properties, with a moderate dielectric constant (ɛ=2553) and a low dielectric loss (tan δ=0.00305) at room temperature and at 10 kHz. The sample showed 45.9% tunability at 10 kHz under a dc electric field of 30 kV/cm. At the frequency of 0.984 GHz, BST-added 2.0 mol% BaCu(B2O5) possessed a dielectric constant of 2204 and a Q value of 146.7.  相似文献   

6.
The extents of the liquidus and solidus fields were determined for tungsten bronze-type solid solutions in the Na2O-BaO-Nb2O5 system by DTA and melt crystal growth experiments. Bronze-type solid solutions exist to 7.1Na2O-34.9BaO-58Nb2O5 in the Nb2O5-rich region and from 12Na2O-38BaO-50Nb2O5 to 4.6Na2O-45.4BaO-50Nb2O5 along the NaNbO2-BaNb2O6 join, which includes NaBa2Nb5O15=10Na2O-40BaO-50Nb2O6. There is little, if any, solid solubility of compositions with a deficiency of Nb2O5. Curie temperatures decline rapidly and dielectric constant peaks broaden with Nb2O5 substitution because the Nb:O ratio becomes greater than the octahedral 1:3 ratio. Useful ferroelectrics exist along the NaNbO3-BaNb2O6 join where the Nb:O ratio is 1:3. Large striae-free crystals, with less optical scattering than Czochralski-grown crystals, were grown from unseeded Na2O-rich melts (e.g. 15Na2O-37.5BaO-47.5Nb2O5) cooled from 1520° to 1300°C at 2°C/h. Annealing effects on these crystals whose compositions lie on the NaNbO3-BaNb2O6 join are discussed.  相似文献   

7.
The effect of glass addition on the properties of BaO–TiO2-WO3 microwave dielectric material N-35, which has Q = 5900 and K = 35 at 7.2 GHz for samples sintered at 1360°C, was investigated. Several glasses including B2O3, SiO2, 5ZnO–2B2O3, and nine other commercial glasses were selected for this study. Among these glasses, one with a 5 wt% addition of B2O3 to N-35, when sintered at 1200°C, had the best dielectric properties: Q = 8300 and K = 34 at 8.5 GHz. Both Q and K increased with firing temperature as well as with density. The Q of N-35, when sintered with a ZnO–B2O3 glass system, showed a sudden drop in the sintering temperature to about 1000°C. The results of XRD, thermal analysis, and scanning electron microscopy indicated that the chemical reaction between the dielectric ceramics and glass had a greater effect on Q than on the density. The effects of the glass content and the mixing process on the densification and microwave dielectric properties are also presented. Ball milling improved the densification and dielectric properties of the N-35 sintered with ZnO–B2O3.  相似文献   

8.
The effects of glass additions on the properties of (Zr,Sn)TiO4 as a microwave dielectric material were investigated. The (Zr,Sn)TiO4 ceramics with no glass addition sintered at 1360°C gave Q = 4900 and K = 37 at 7.9 GHz. Several glasses, including SiO2, B2O3, 5ZnO–2B2O3, and nine commercial glasses, were tested during this study. Among these glasses, (Zr,Sn)TiO4 sintered with ZnO-B2O3–SiO2 (Corning 7574) showed more than 20% higher density than that of pure (Zr,Sn)TiO4 sintered at the same temperature. A 5-wt% addition of SiO2, to (Zr,Sn)TiO4, when sintered at 1200°C, gave the best Q : Q = 2700 at 9 GHz. Results of XRD analysis and scanning electron microscopy and the effect of glass content are also presented.  相似文献   

9.
In the system TiO2—Al2O3, TiO2 (anatase, tetragonal) solid solutions crystallize at low temperatures (with up to ∼ 22 mol% Al2O3) from amorphous materials prepared by the simultaneous hydrolysis of titanium and aluminum alkoxides. The lattice parameter a is relatively constant regardless of composition, whereas parameter c decreases linearly with increasing Al2O3. At higher temperatures, anatase solid solutions transform into TiO2 (rutile) with the formation of α-Al2O3. Powder characterization is studied. Pure anatase crystallizes at 220° to 360°C, and the anatase-to-rutile phase transformation occurs at 770° to 850°C.  相似文献   

10.
Crystallization sequences of glasses with compositions in the tridymite primary phase field of the MgO-Al2O3-SiO2 system were studied by DTA, X-ray diffraction, and other techniques. Crystallization was catalyzed by the addition of 7 wt% of either ZrO2 or TiO2. Up to 10 wt% CeO2 was also added to some glasses. Metastable solid solutions with the high-quartz structure exhibiting varying lattice parameters commonly occurred at low temperatures, transforming into a high cordierite at higher temperatures. Depending on the composition and heat treatment, other phases also appeared, e.g. Ce2Ti2O4 (Si2O7). The rate of crystallization was markedly dependent on the catalyst. Colloidal precipitation of the catalyst accompanied by bulk crystallization of the glass was observed with ZrO2, but no crystalline TiO2 was detected. In the presence of CeO2, TiO2 was a more effective catalyst than ZrO2. Although CeO2 lowered the melting temperatures of the glass-ceramics, it increased the stability of the glasses and inhibited volume nucleation, causing coarse structures to form on crystallization.  相似文献   

11.
This study examined the influence of the addition of ceramic fillers (up to 20 wt% of TiO2, Al2O3, and ZnO, respectively) to a BaO–ZnO–B2O3–P2O5 glass matrix on the dielectric and optical properties with the aim of using this material as the barrier ribs in plasma display panels. The modification of the dielectric constant by the fillers was related to the formation of secondary phases, the changes in the glass composition by the partial dissolution of the fillers, and the presence of pores. The reflectance of the composites ranged from 60% to 80% with the addition of 20 wt% filler.  相似文献   

12.
The dielectric properties of (Ba0.6Sr0.4)TiO3 and Al2O3-doped (Ba0.6Sr0.4)TiO3 have been characterized. The grain size of the specimen is maximum for (Ba0.6Sr0.4)TiO3 that has been doped with 1 wt% Al2O3. The density and the real part of the relative dielectric constant each decrease as the Al2O3 content increases. The loss factor is minimum for (Ba0.6Sr0.4)TiO3 that has been doped with 2 wt% Al2O3. The dielectric constant of the specimens decreases as the applied dc field increases. The influence of the dc field on the loss factor is much less than that on the dielectric constant. The tunability is ∼24% for (Ba0.6Sr0.4)TiO3 that has been doped with 1 wt% Al2O3.  相似文献   

13.
Eight glass samples in the B2O3-SiO2 system with compositions from 20 to 90 mol% B2O3 were prepared. The equilibrium vaporization was studied by Knudsen effusion mass spectrometry at temperatures between 1450 and 1500 K. B2O3 ( g ) was the most abundant boron-containing species in the vapor; no silicon-containing gaseous species were detected. Thermodynamic activities of B2O3 in the liquid were determined at 1475 K. Thermodynamic activities of SiO2 and integral excess Gibbs energies were estimated from the thermodynamic activities of B2O3. The thermodynamic data support the results obtained by other methods indicating the existance of a miscibility gap in the metastable liquid.  相似文献   

14.
The influence of co-additions of crystalline TiO2 and SiO2 fillers (10 wt% addition in total) to BaO–ZnO–B2O3–SiO2 glass on resultant properties was investigated from the viewpoint of applying the material to the barrier ribs of plasma display panels. The substitution of SiO2 for TiO2 reduced the dielectric constant significantly, while it maintained high optical reflectance and appropriate coefficient of thermal expansion (CTE) in the case when TiO2 alone was used. A 5–7.5 wt% SiO2 addition with 2.5–5 wt% TiO2 under the constraint of 10 wt% total fillers demonstrated an optical reflectance of about 55%, a CTE of about 8.3 × 10−6 K−1 (compatible with glass panels), and a dielectric constant of about 7.5, which are promising properties for the barrier rib application.  相似文献   

15.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

16.
B2O3 was added to nominal composition Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature for application to low-temperature cofired ceramic (LTCC) devices. B2O3 reacted with SiO2 to form a liquid phase containing SiO2 and B2O3. The composition and melting temperature of the liquid phase depended on the sintering temperature and the B2O3 content. The specimen containing 20.0 mol% of B2O3 sintered at 900°C exhibited high microwave dielectric properties of Q × f =53 000 GHz, ɛ r=5.7, and τf=−16 ppm/°C, confirming the promising potential of the B2O3-added ZS ceramics as candidate materials for the LTCC devices.  相似文献   

17.
Nine compositions containing 40 to 68% B2O3 were used to study the high-lithia portion of the system Li2O-B2O3 by quenching and differential thermal analysis methods. The compounds 3Li2O 2B2O3 and 3Li2O B2O3 melted incongruently at 700°± 6°C, and 715°± 15°C., respectively. The compound 2Li2O B2O3 is assumed to dissociate slightly below 650°± 15° C., although the data could also be interpreted as in-congruent melting. Below 600°± 6°C. it does dissociate to the 3:2 and 3:1 compounds. In this narrow temperature interval the 2:1 compound had an inversion at 618°± 6°C. Both forms of the 2:1 compound could be quenched to room temperature. X-ray diffraction data for the compounds are tabulated, and the complete phase diagram for the system Li2O-B2O3 is presented.  相似文献   

18.
Comparing the crystallization mechanism of stoichiometric and B2O3 and P2O5 containing glass reveals that the additives extend the gap between the glass transition and crystallization temperatures and suppress formation of μ, cordierite while promoting direct crystallization of α cordierite. Detailed TEM analysis of nucleation and growth of crystals in hot-pressed pellets of B2O3/P2O5-containing glass particles shows that nucleation occurs on unidentified heterogeneous nuclei at the sites of the previous particle surfaces. Growth of α cordierite with a cellular morphology or μ cordierite with a dendritic morphology is most likely controlled by the glass composition directly ahead of the growth front.  相似文献   

19.
Al2O3 addition to the melt of a BiSrCaCu2O x composition was found by TEM observation to cause the liquid-liquid phase separation of the melt-quenched glass, and to result in preferential precipitation of superconducting Bi2Sr2Ca1Cu2O x crystals from the melt during the cooling process.  相似文献   

20.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号