首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermophilic microorganism, SBS-4S, was isolated from a hot spring located in Gilgit, Northern Areas of Pakistan. It was found to be an aerobic, gram-positive, rod-shaped, thermophilic bacterium that grew on various sugars, carboxylic acids and hydrocarbons at temperatures between 45°C and 75°C. Complete 16S rRNA gene sequence of the microorganism exhibited homology to various species of genus Geobacillus. A highest homology of 99.8% was found with Geobacillus kaustophilus. A partial (0.7 kbp) chaperonin gene sequence also showed a highest homology of 99.4% to that of G. kaustophilus whereas biochemical characteristics of the microorganism were similar to Geobacillus uzenensis. Based on biochemical characterization, 16S rRNA and chaperonin gene sequences, we identified SBS-4S as a strain of genus Geobacillus. Strain SBS-4S produced several extracellular enzymes including amylase, protease and lipase. The lipase encoding gene was cloned, expressed in Escherichia coli and the gene product was characterized. The recombinant lipase was optimally active at 60°C with stability at wide pH range (6-12). The enzyme activity was enhanced remarkably in the presence of Ca(+2). The K(m) and the V(max) for the hydrolysis of p-nitrophenyl acetate were 3.8mM and 2273 μmol min(-1)mg(-1), respectively. The ability of the recombinant enzyme to be stable at a wide pH range makes it a potential candidate for use in industry.  相似文献   

2.
A novel N-acyl-d-amino acid amidohydrolase (DAA) was purified from the cells of a novel species of the genus Microbacterium. The purified enzyme, termed AcyM, was a monomeric protein with an apparent molecular weight of 56,000. It acted on N-acylated hydrophobic d-amino acids with the highest preference for N-acetyl-d-phenylalanine (NADF). Optimum temperature and pH for the hydrolysis of NADF were 45°C and pH 8.5, respectively. The k(cat) and K(m) values for NADF were 41?s(-1) and 2.5?mM at 37°C and pH 8.0, although the enzyme activity was inhibited by high concentrations of NADF. Although many known DAAs are inhibited by 1?mM EDTA, AcyM displayed a 65% level of its full activity even in the presence of 20?mM EDTA. Based on partial amino acid sequences of the purified enzyme, the full-length AcyM gene was cloned and sequenced. It encoded a protein of 495 amino acids with a relatively low sequence similarity to a DAA from Alcaligenes faecalis DA1 (termed AFD), a binuclear zinc enzyme of the α/β-barrel amidohydrolase superfamily. The unique cysteine residue that serves as a ligand to the active-site zinc ions in AFD and other DAAs was not conserved in AcyM and was replaced by alanine. AcyM was the most closely related to a DAA of Gluconobacter oxydans (termed Gox1177) and phylogenetically distant from AFD and all other DAAs that have been biochemically characterized thus far. AcyM, along with Gox1177, appears to represent a new phylogenetic subcluster of DAAs.  相似文献   

3.
Sphingomonas sp. JB13, isolated from slag of a >20-year-old phosphate rock-stacking site, showed the highest 16S rDNA (1343bp) identity of 97.2% with Sphingomonas sp. ERB1-3 (FJ948169) and <97% identities with other identified Sphingomonas strains. A mannanase-coding gene (1191bp) was cloned and encodes a 396-residue polypeptide (ManAJB13) showing the highest amino acid sequence identities of 56.2% with the putative glycosyl hydrolase (GH) family 26 endo-1,4-β-mannanase from Rhodothermus marinus (YP_004824245), and 44.2% with the identified GH 26 endo-1,4-β-mannanase from Cellvibrio japonicus (2VX5_A). The recombinant ManAJB13 (rManAJB13) was expressed in Escherichia coli BL21 (DE3). Purified rManAJB13 displayed the typical characteristics of low-temperature-active enzymes: showing apparent optimal at 40°C, ~55% of the maximum activity at 20°C and ~20% at 10°C, and thermolability at 45°C (~15min half-life). The potential mechanism for low-temperature-activity of GH 26 endo-1,4-β-mannanases might be ascribed to the more hydrophobic residues (AILFWV) and less polar residues (NCQSTY) compared with typical thermophilic and mesophilic counterparts. The purified rManAJB13 exhibited >85% mannanase activity at the concentration of 0-4.0M NaCl. No loss of enzyme activity was observed after incubating the enzyme with 1M or 2M NaCl, or trypsin or proteinase K at 37°C and pH 6.5 for 1h. The K(m), V(max) and k(cat) values were 5.0mgml(-1), 277.8μmol min(-1)mg(-1), and 211.9s(-1), respectively, using locust bean gum as the substrate.  相似文献   

4.
Phytase, an enzyme that catalyzes the hydrolysis of phytate, was purified from Klebsiella pneumoniae 9-3B. The isolate was preferentially selected in a medium which contains phytate as a sole carbon and phosphate source. Phytic acid was utilized for growth and consequently stimulated phytase production. Phytase production was detected throughout growth and the highest phytase production was observed at the onset of stationary phase. The purification scheme including ion exchange chromatography and gel filtration resulted in a 240 and 2077 fold purification of the enzyme with 2% and 15% recovery of the total activity for liberation of inorganic phosphate and inositol, respectively. The purified phytase was a monomeric protein with an estimated molecular weight of 45kDa based on size exclusion chromatography and SDS-PAGE analyses. The phytase has an optimum pH of 4.0 and optimum temperature of 50°C. The phytase activity was slightly stimulated by Ca(2+) and EDTA and inhibited by Zn(2+) and Fe(2+). The phytase exhibited broad substrate specificity and the K(m) value for phytate was 0.04mM. The enzyme completely hydrolyzed myo-inositol hexakisphosphate (phytate) to myo-inositol and inorganic phosphate. The properties of the enzyme prove that it is a good candidate for the hydrolysis of phytate for industrial applications.  相似文献   

5.
2-Hydroxy-6-oxo-7-methylocta-2,4-dienoate (6-isopropyl-HODA) hydrolase (CumD), an enzyme of the cumene biodegradation pathway encoded by the cumD gene of Pseudomonas fluorescens IP01, was purified to homogeneity from an overexpressing Escherichia coli strain. SDS-polyacrylamide gel electrophoresis and gel filtration demonstrated that it is a dimeric enzyme with a subunit molecular mass of 32 kDa. The pH optima for activity and stability were 8.0 and 7.0-9.0, respectively. The enzyme exhibited a biphasic Arrhenius plot of catalysis with two characteristic energies of activation with a break point at 20 degrees C. The enzyme has a K(m) of 7.3 microM and a k(cat) of 21 s(-1) for 6-isopropyl-HODA (150 mM phosphate, pH 7.5, 25 degrees C), and its substrate specificity covers larger C6 substituents compared with another monoalkylbenzene hydrolase, TodR Unlike TodF, CumD could slightly hydrolyze 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (6-phenyl-HODA). A mutant enzyme as to a putative active site residue, S103A, had 10(5)-fold lower activity than that of the wild-type enzyme.  相似文献   

6.
Thermotoga maritima MSB8 possesses two xylanase genes, xynA and xynB. The xynB gene was isolated from the genomic DNA of T. maritima, cloned, and expressed in Escherichia coli. XynB was purified to homogeneity by heat treatment, affinity chromatography and ion-exchange column chromatography. The purified enzyme produced a single band upon SDS-PAGE corresponding to a molecular mass of 42 kDa. At 70 degrees C, the enzyme was stable between pH 5.0 and pH 11.4, and it was stable at temperatures of up to 100 degrees C from pH 7.0 to pH 8.5. At 50 degrees C, XynB displayed an optimum pH of 6.14 and at this pH the temperature for optimal enzyme activity was 90 degrees C. XynB exhibited broad substrate specificity and was highly active towards p-nitrophenyl-beta-D-xylobioside with K(m) and k(cat) values of 0.0077 mM and 5.5 s(-1), respectively, at 30 degrees C. It was also active towards p-nitrophenyl-beta-D-xyloside. The initial product of the cleavage of p-nitrophenyl-beta-D-xyloside was xylobiose, indicating that the major reaction in the cleavage was transglycosylation, not hydrolysis.  相似文献   

7.
Gluconobacter oxydans has a large number of membrane-bound dehydrogenases linked to the respiratory chain that catalyze incomplete oxidation of a wide range of organic compounds by oxidative fermentation. Because the respiratory chain is a primary site of reactive oxygen species (ROS) production, the bacterium is expected to have a high capacity to detoxify nascent ROS. In the present study, a gene that encodes a catalase of G. oxydans, which might act as a potential scavenger of H(2)O(2), was cloned, and the expression product (termed rGoxCat) was characterized biochemically. rGoxCat is a heme b-containing tetrameric protein (molecular mass, 320 kDa) consisting of identical subunits. The recombinant enzyme displayed a strong catalase activity with a k(cat) of 6.28×10(4) s(-1) and a K(m) for H(2)O(2) of 61 mM; however, rGoxCat exhibited no peroxidase activity. These results, along with the phylogenetic position of the enzyme, provide conclusive evidence that rGoxCat is a monofunctional, large-subunit catalase. The enzyme was most stable in the pH range of 4-9, and greater than 60% of the original activity was retained after treatment at pH 3.0 and 40°C for 1h. Moreover, the enzyme exhibited excellent thermostability for a catalase from a mesophilic organism, retaining full activity after incubation for 30 min at 70°C. The observed catalytic properties of rGoxCat, as well as its stability in a slightly acidic environment, are consistent with its role in the elimination of nascent H(2)O(2) in a bacterium that produces a large amount of organic acid via oxidative fermentation.  相似文献   

8.
This study identifies a new fungal strain, Lentinus sp., that can produce extracellular forms of laccases with an activity of approximately 58?300 U/L. A purified laccase (designated lcc3) was identified by LC-ESI MS/MS as an N-linkage glycosylated protein. The isolated lcc3 cDNA is composed of 1563 bp encoding for a polypeptide of 521 amino acid residues with 4 putative Cu binding regions. Kinetic analyses revealed that the specific activity, k(cat), K(m), and k(cat)/K(m) of lcc3 at pH 2.5 and 70 °C with 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) used as a substrate was 2047 U mg(-1), 2017 s(-1), 8.4 μM, and 240 s(-1) μM(-1), respectively. Lcc3 is stable at pH 6.0-10.0 and has a midpoint temperature (T(m)) of 77.1 °C. We observed 97% decolorization efficiency on Acid Blue 80, 88% on RBBR, and 61% on Acid Red 37 by lcc3. Structural modeling analysis showed that five, four, and three hydrogen bonds can be formed between Acid Blue 80 and Arg(178), Arg(182), or Asn(358); between RBBR and His(132), Ser(134), or Asp(482); and between Acid Red 37 and Arg(178), respectively. Notably, Lentinus lcc3 efficiently reversed the toxicity of anthraquinone and azo dyes on rice seed germination and decolorized industrial textile effluent, suggesting the enzyme may be valuable for bioremediation.  相似文献   

9.
We have screened 39 microfungi isolates originated from soil in terms of lipolytic activity. Out of all screened, a novel strain of Mucor hiemalis f. corticola was determined to have the highest lipase activity. The extracellular lipase was produced in response to 2% glucose and 2.1% peptone. The lipase was purified 12.63-folds with a final yield of 27.7% through following purification steps; ammonium sulfate precipitation, dialysis, gel filtration column chromatography and ion exchange chromatography, respectively. MALDI-TOF MS analysis revealed 31% amino-acid identity to a known lipase from Rhizomucor miehei species. The molecular weight of the lipase was determined as 46kDa using SDS-PAGE and analytical gel filtration. Optimal pH and temperature of the lipase were determined as 7.0 and 40°C, respectively. The enzyme activity was observed to be stable at the pH range of 7.0-9.0. Thermostability assays demonstrated that the lipase was stable up to 50°C for 60min. The lipase was more stable in ethanol and methanol than other organic solvents tested. Furthermore, the activity of the lipase was slightly enhanced by SDS and PMSF. In the presence of p-NPP as substrate, K(m) and V(max) values of the lipase were calculated by Hanes-Woolf plot as 1.327mM and 91.11μmol/min, respectively.  相似文献   

10.
This work reports the detection and characterization of caseinolytic and milk-clotting activities from Moringa oleifera flowers. Proteins extracted from flowers were precipitated with 60% ammonium sulphate. Caseinolytic activity of the precipitated protein fraction (PP) was assessed using azocasein, as well as α(s)-, β- and κ-caseins as substrates. Milk-clotting activity was analysed using skim milk. The effects of heating (30-100°C) and pH (3.0-11.0) on enzyme activities were determined. Highest caseinolytic activity on azocasein was detected after previous incubation of PP at pH 4.0 and after heating at 50°C. Milk-clotting activity, detected only in the presence of CaCl(2), was highest at incubation of PP at pH 3.0 and remained stable up to 50°C. The pre-treatment of milk at 70°C resulted in highest clotting activity. Enzyme assays in presence of protease inhibitors indicated the presence of aspartic, cysteine, serine and metallo proteases. Aspartic proteases appear to be the main enzymes involved in milk-clotting activity. PP promoted extensive cleavage of κ-casein and low level of α(s)- and β-caseins hydrolysis. The milk-clotting activity indicates the application of M. oleifera flowers in dairy industry.  相似文献   

11.
Xanthophyllomyces dendrorhous grown in different media shows amylolytic activity, consisting in an extracellular exo-acting enzyme able to hydrolysed alpha,1-4 glycosidic bonds from soluble starch, which also cleaves maltose and malto-oligosaccharides. The enzyme was purified, using basically a couple of chromatography process on DEAE-Sephacel. It is a glycoprotein with a molecular weight estimated to be 60.2 kDa based on its mobility in SDS-PAGE and 115 kDa based on gel filtration. N-linked carbohydrate accounts for 12% of the total mass. It exhibited optimum activity at pH 5.5 and 45 degrees C. Thermostability analysis indicated that it was stable to thermal treatment up to 50 degrees C; 50% of the activity was maintained after 3 h. The rate parameters measured for the hydrolysis of starch and various chain length malto-oligosaccharides shows high catalytic efficiency, calculated by the relationship V(cat)/K(m), for malto-oligosaccharides, such as maltotriose (873 mM(-1) min(-1)), or maltoheptose (698 mM(-1) min(-1)). The new enzyme hydrolysed soluble starch with nearly 3.5- and 1.4-fold lower efficiency than that for maltotriose and maltose, respectively. No activity was found on heterogeneous substrates, such as sucrose and aryl alpha-glucoside, or on isomalto-oligosaccharides. In accordance to substrate specificity profile, the new enzyme was classified as an alpha-glucosidase.  相似文献   

12.
The peptidase purified to homogeneity from Lactococcus lactis subsp. lactis biovar. diacetylactis ATCC 13675 was considered to be an aminotripeptidase (EC 3.4.11.4) from the results of substrate specificity. The K(m) value showed a tendency to decrease with the number of alanine residues, but to increase with the number of glycine residues in the substrate tripeptide. The effects of divalent metal ions on enzyme activity were considerably different depending on the tripepride used as a substrate. In the case of Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, there was apparent correlation between enzyme activities observed in the presence of metal ions and following metal ion replacement. The Zn2+-replaced enzyme showed almost the same K(m) and k(cat) values as the native enzyme, suggesting the enzyme to be a zinc metallopeptidase. The K(m) of the divalent metal-replaced enzyme increased in the order of Co2+, Zn2+, and Mn2+. As a result of replacement with Co2+ an enzyme having 2.3-fold higher activity compared to the native enzyme for GGF as a substrate was obtained. Thus, the change in substrate specificity observed following metal replacement may suggest a highly specific interaction between the enzyme, metal and substrate, leading to the activity expression and stability of the tripeptidase.  相似文献   

13.
A novel glutamyl aminopeptidase (aminopeptidase A, EC 3.4.11.7) was purified from chicken meat by ammonium sulfate fractionation, ethanol fractionation, heat treatment, and successive column chromatographies of DEAE-Sepharose CL-6B and Sephadex G-200. The purified enzyme migrated as a single band on SDS-PAGE. The molecular weight of this enzyme was found to be 55,000 and 550,000 by SDS-PAGE and Sephadex G-200 column chromatographies, respectively. This enzyme hydrolyzed Glu- and Asp-, but not Leu-, Arg-, and Ala-2-naphthylamide (-2NA) at all. The optimum pH and temperature for hydrolysis of Glu-2NA was 7.5. and 70°C, respectively. Reducing agents such as cysteine and dithiothreitol inhibited the activity of this enzyme at concentrations of 1 mM. However, the activation by Ca(2+) and the inhibition by amastatin were not observed.  相似文献   

14.
Fibrinolytic enzymes are important in treatment of cardiovascular diseases. The present work reports isolation, screening and identification of marine cultures for production of fibrinolytic enzymes. A potent fibrinolytic enzyme-producing bacterium was isolated from marine niches and identified as Bacillus subtilis ICTF-1 on the basis of the 16S rRNA gene sequencing and biochemical properties. Further, media optimization using L(18)-orthogonal array method resulted in enhanced production of fibrinolytic enzyme (8814 U/mL) which was 2.6 fold higher than in unoptimized medium (3420 U/mL). In vitro assays revealed that the enzyme could catalyze blood clot lysis effectively, indicating that this enzyme could be a useful thrombolytic agent. A fibrinolytic enzyme was purified from the culture supernatant to homogeneity by three step procedures with a 34.42-fold increase in specific activity and 7.5% recovery. This purified fibrinolytic enzyme had molecular mass of 28 kDa, optimal temperature and pH at 50 °C and 9, respectively. It was stable at pH 5.0-11.0 and temperature of 25-37 °C. The enzyme activity was activated by Ca(2+) and obviously inhibited by Zn(2+), Fe(3)(+), Hg(2+) and PMSF. The purified fibrinolytic enzyme showed high stability towards various surfactants and was relatively stable towards oxidizing agent. Considering these properties purified fibrinolytic enzyme also finds potential application in laundry detergents in addition to thrombolytic agent. The gene encoding fibrinolytic enzyme was isolated and its DNA sequence was determined. Compared the full DNA sequence with those in NCBI, it was considered to be a subtilisin like serine-protease.  相似文献   

15.
The malate dehydrogenase (MDH) (EC 1.1.1.37) from Corynebacterium glutamicum (Brevibacterium flavum) ATCC14067 was purified to homogeneity. Its amino-terminal sequence (residues 1 to 8) matched the sequence (residues 2 to 9) of the MDH from C. glutamicum (GenBank accession no. CAC83073). The molecular mass of the native enzyme was 130 kDa. The protein was a homotetramer, with a 33-kDa subunit molecular mass. The enzyme was almost equally active both for NADU and NADPH as coenzyme on the bases of the k(cat) values at pH 6.5 which is the optimum pH for the both coenzymes. Plotting of the logarithms of the 1/Km, k(cat), and k(cat)/K(m) values with respect to oxalacetate against pH lead to speculation that imidazolium is possibly a functional group in the active center of the enzyme. Citrate activated the enzyme in the oxidation of malate to oxalacetate and inhibited it in the reverse reaction.  相似文献   

16.
Cathepsin B from the skeletal muscle of a fresh water fish Tilapia mossambica was purified 4280-fold with 9% recovery. The electrophoretic homogeneity of the preparation was established both under native and denatured conditions. The molecular weight of cathepsin B on the basis of its gel filtration profile was 23,500 daltons. The enzyme, an endopeptidase, hydrolysed Z-arg-arg-NNap and Bz-arg-NNap, with Km values of 0.57 and 3.23 mM, respectively. Cathepsin B did not display aminopeptidase activity, but cleaved Bz-arg-NH2, exhibiting the specificity of a carboxypeptidase. Among protein substrates tested, only azocoll was hydrolyzed at lower pH values. Leu-peptin, antipain and thiol blockers abolished the enzyme activity completely. The Kcat set-1 value of fish cathepsin B seemed to be lower than that of mammalian enzyme.  相似文献   

17.
Polyphenol oxidase (Isozyme I) from potato was extracted and purified with ammonium sulfate, cation-exchange (Bio-Rad Bio-Scale S2) and Sephadex G-100 column chromatography. The enzyme was purified 11.8 fold resulting in a specific activity of 250.3 units/mg. Optimum pH of the enzyme was 6.6. Optimum temperature of the enzyme was 40C and its half-life was 0.8 min at 70C. The Kmfor catechol, pyrogallol, 4-methyl catechol, caffeic acid and L-DOPA were 4.11 mM, 0.61 mM, 0.78 mM, 0.50 mM and 32 mM, respectively. However, monophenols such as tyrosine, p-cresol and 1-naphtol did not show any activity. Data for Vmax/Km which represents catalytic efficiency show that 4-methyl catechol has the highest value. The molecular weight of the active enzyme was 86,000 Da, composed of two identical subunits. The number of Cu2+ ions bound was found to be 2 per enzyme molecule.  相似文献   

18.
The objective of this work is to use protease enzyme as an ecofriendly alternative to chemicals in dehairing. An alkaline protease producing bacterium was isolated from protein-rich soil sample. The bacterium was identified as Bacillus cereus VITSN04 by 16S rRNA gene sequencing method. Growth characteristics and protease activity were studied in yeast, malt, beef, nutrient broth and soybean casein digest media and the enzyme secretion was found to correspond with growth. Maximum protease production was obtained in soybean casein digest medium at 16h with the activity of 200.1±0.68U/ml and a correlation coefficient of 0.965 between growth and enzyme production. The crude enzyme was found to have maximum activity at 30°C and pH 8.0. The protease was purified by ammonium sulphate precipitation, Sephadex G-50 and G-100 gel filtration chromatography. The purified protease was homogeneous on non-denaturing PAGE and its molecular weight was estimated to be 32kDa. The purified protease was of the serine type as it was inhibited by phenylmethylsulphonyl fluoride. The crude enzyme preparation was found to be effective in dehairing goat skins in leather processing.  相似文献   

19.
Cellulose is the most abundant renewable polysaccharide with a high potential for degradation to useful end products. In nature, most cellulose is produced as crystalline cellulose. Therefore, cellulases with high hydrolytic activity against crystalline cellulose are of great interest. In this study, a crystalline cellulose degradation enzyme was investigated. The cDNA encoding a β-glucanase, CbhYW23-2, was cloned from the ruminal fungus Piromyces rhizinflatus. To examine the enzyme activities, CbhYW23-2 was expressed in Escherichia coli as a recombinant His(6) fusion protein and purified by immobilized metal ion-affinity chromatography. Response surface modeling (RSM) combined with central composite design (CCD) and regression analysis was then employed for the planned statistical optimization of the β-glucanase activities of CbhYW23-2. The optimal conditions for the highest β-glucanase activity of CbhYW23-2 were observed at 46.4°C and pH 6.0. The results suggested that RSM combined with CCD and regression analysis were effective in determining optimized temperature and pH conditions for the enzyme activity of CbhYW23-2. CbhYW23-2 also showed hydrolytic activities toward Avicel, carboxymethyl cellulose (CMC), lichenan, and pachyman. The results also proved that the high activity of CbhYW23-2 on crystalline cellulose makes it a promising candidate enzyme for biotechnological and industrial applications.  相似文献   

20.
An alkaline invertase (IT I) and an acid invertase (IT II) were purified from the soluble fraction of suspension cultured bamboo cells. Both purified invertases were homogeneous as examined by SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and were identified as β-fructofuranosidases able to attack the β-fructofuranoside from the fructose end. With respect to sucrose hydrolysis, the optimal pHs were 7.0 and 4.5 for IT I and IT II, respectively. The Km’s were 10.9 and 3.7 mM. The IT I and IT II molecular masses were 240 and 68 kDa, respectively, as estimated by gel filtration. The isoelectric points were 4.8 and 7.4. IT I was a homotetrameric enzyme activated by bovine serum albumin (BSA). IT II was a monomeric enzyme activated by BSA, concanavalin A (ConA) and urease. Both isoforms were significantly inhibited by heavy metal ions Ag+ (5 mM) and Hg2+ (1 mM), and mercaptide forming agent ρ-chloromercuribenzoic acid (PCMB; 0.5 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号