首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
文章针对高光谱波段数众多、信息冗余量大的特点,首先对高光谱曲线进行光谱特征参数提取,然后再选择合适的吸收峰波段作为输入向量,在VS2008平台上实现了采用贝叶斯树(NBTree)算法对铀矿床高光谱数据进行分类。  相似文献   

2.
高光谱遥感分类方法研究   总被引:1,自引:0,他引:1  
高光谱遥感是近二十年发展起来的遥感前沿技术。本文探讨了高光谱遥感分类方法,比较分析各种方法与传统方法的优缺点。  相似文献   

3.
高光谱遥感数据最佳波段选择方法试验研究   总被引:14,自引:0,他引:14  
分析了多光谱遥感数据最佳波段选择的信息量诸方法的内在联系,说明了信息量方法用于高光谱遥感数据最佳波段选择的局限性,提出了基于类间可分性的最佳波段选择原则和方法。通过试验,说明了各种处理方法的有效性、局限性和计算复杂度。  相似文献   

4.
高光谱遥感数据最佳波段选择方法试验研究   总被引:28,自引:4,他引:24  
刘建平,赵英时,孙淑玲(中国科技大学研究生院 北京 100039)摘要:分析了多光谱遥感数据最佳波段选择的联合熵、行列式值及最佳指数等信息量计算方法的内在联系,说明了信息量方法用于高光谱遥感数据最佳波段选择的局限性,提出了基于类间可分性的最佳波段选择原则和方法。通过试验,说明了各种处理方法的有效性、局限性和计算复杂度。关 键 词:高光谱遥感数据;最佳波段选择;信息量;可分性中图分类号:TP 751.1/TP 79  相似文献   

5.
一种新的高光谱遥感图像降维方法   总被引:28,自引:1,他引:28       下载免费PDF全文
高光谱遥感图像的高数据维给图像进一步处理带来了困难,为了解决这一问题,提出了自适应波段选择(ABS)的降维方法。该方法充分考虑了高光谱图像的空间相关性和谱间相关性,通过计算各个波段的指数来选择信息量大并且与其他波段相关性小的波段。对各波段相应的指数重新排列之后,有两种方法来选择最终波段:一种是选择波段指数比设定指数大的波段,另一种方法是选择波段指数排在前n个的所有波段。为了验证ABS方法的有效性,对降维后的高光谱图像进行了贝叶斯监督分类,分类结果表明自适应波段选择的方法能够选择出信息丰富的波段,分类精度与使用原始波段相比提高10.4%,计算复杂度大大降低。  相似文献   

6.
目的 场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为了给高光谱场景理解提供数据支撑,本文构建了面向场景分类的高光谱遥感图像数据集(hyperspectral remote sensing dataset for scene classification,HSRS-SC)。方法 HSRS-SC来自黑河生态水文遥感试验航空数据,是目前已知最大的高光谱场景分类数据集,经由定标系数校正、大气校正等处理形成。HSRS-SC分为5个类别,共1 385幅图像,且空间分辨率较高(1 m),波长范围广(380~1 050 nm),同时蕴含地物丰富的空间和光谱信息。结果 为提供基准结果,使用AlexNet、VGGNet-16、GoogLeNet在3种方案下组织实验。方案1仅利用可见光波段提取场景特征。方案2和方案3分别以加和、级联的形式融合可见光与近红外波段信息。结果表明有效利用高光谱影像不同波段信息有利于提高分类性能,最高分类精度达到93.20%。为进一步探索高光谱场景的优势,开展了图像全谱段场景分类实验。在两种训练样本下,高光谱场景相比RGB图像均取得较高的精度优势。结论 HSRS-SC可以反映详实的地物信息,能够为场景语义理解提供良好的数据支持。本文仅利用可见光和近红外部分波段信息,高光谱场景丰富的光谱信息尚未得到充分挖掘。后续可在HSRS-SC开展高光谱场景特征学习及分类研究。  相似文献   

7.
面向对象的高光谱遥感影像分类方法研究   总被引:1,自引:0,他引:1  
尹作霞  杜培军 《遥感信息》2007,(4):29-32,I0003
在基于像素的高光谱影像分类方法的基础上,结合面向对象图像分析理论与方法,提出面向对象的高光谱遥感影像分类方法,并具体分析探讨了面向对象高光谱遥感影像分类的关键技术,包括多尺度分割、最优波段选择、人机交互和知识库的建立等。试验表明,面向对象的分类方法应用于高光谱影像较传统分类方法有较高的精度,有很大的应用潜力。  相似文献   

8.
结合随机子空间和核极端学习机集成提出了一种新的高光谱遥感图像分类方法。首先利用随机子空间方法从高光谱遥感图像数据的整体特征中随机生成多个大小相同的特征子集;然后利用核极端学习机在这些特征子集上进行训练从而获得基分类器;最后将所有基分类器的输出集成起来,通过投票机制得到分类结果。在高光谱遥感图像数据集上的实验结果表明:所提方法能够提高分类效果,且其分类总精度要高于核极端学习机和随机森林方法。  相似文献   

9.
高光谱图像分类算法通常需要逐点对图像中的像素点进行迭代处理,计算复杂度及并行程度存在较大差异。随着高光谱遥感图像空间、光谱和辐射分辨率的不断提升,这些算法无法满足实时处理海量遥感图像数据的需求。通过分析NPU存储计算一体化模式与遥感图像分类算法的实现步骤,设计低功耗CPU+NPU异构资源计算架构的低秩稀疏子空间聚类(LRSSC)算法,将数据密集型计算转移至NPU,并利用NPU数据驱动并行计算和内置AI加速,对基于机器学习算法的海量遥感数据进行实时分类。受到big.LITTLE计算范式的启发,CPU+NPU异构资源计算架构由8 bit和低精度位宽NPU共同组成以提高整体吞吐量,同时减少图网络推理过程中的能量损耗。实验结果表明,与CPU计算架构和CPU+GPU异构计算架构的LRSSC算法相比,CPU+NPU异构计算架构的LRSSC算法在Pavia University遥感数据集下的计算速度提升了3~14倍。  相似文献   

10.
基于决策树的高光谱遥感影像分类方法研究   总被引:1,自引:0,他引:1  
为了验证将决策树算法用于高光谱遥感影像分类的可行性,提出了一种二叉决策树自动构建算法用于高光谱遥感影像分类.通过对高光谱遥感影像进行现场采样、对样本进行统计和训练,生成了一棵二叉决策树,从决策树中提取出分类规则,并对高光谱遥感影像进行分类.生成的决策树简单明了,分类规则易于理解,分类效率和精度都比较高,实现了高光谱遥感影像从数据降维、样本选择、样本训练、决策树生成、影像分类的“一体化”和“自动化”.  相似文献   

11.
传统的数据分类算法多是基于平衡的数据集创建,对不平衡数据分类时性能下降,而实践表明组合选择能有效提高算法在不平衡数据集上的分类性能。为此,从组合选择的角度考虑不平衡类学习问题,提出一种新的组合剪枝方法,用于提升组合分类器在不平衡数据上的分类性能。使用Bagging建立分类器库,直接用正类(少数类)实例作为剪枝集,并通过MBM指标和剪枝集,从分类器库中选择一个最优或次优子组合分类器作为目标分类器,用于预测待分类实例。在12个UCI数据集上的实验结果表明,与EasyEnsemble、Bagging和C4.5算法相比,该方法不但能大幅提升组合分类器在正类上的召回率,而且还能提升总体准确率。  相似文献   

12.
Many real-world datasets suffer from the unavoidable issue of missing values,and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors.In this paper,we propose a random subspace sampling method,RSS,by sampling missing items from the corresponding feature histogram distributions in random subspaces,which is effective and efficient at different levels of missing data.Unlike most established approaches,RSS does not train on fixed imputed datasets.Instead,we design a dynamic training strate-gy where the filled values change dynamically by resampling during training.Moreover,thanks to the sampling strategy,we design an ensemble testing strategy where we combine the results of multiple runs of a single model,which is more effi-cient and resource-saving than previous ensemble methods.Finally,we combine these two strategies with the random sub-space method,which makes our estimations more robust and accurate.The effectiveness of the proposed RSS method is well validated by experimental studies.  相似文献   

13.
基于半监督学习的数据流混合集成分类算法   总被引:1,自引:0,他引:1  
当前已有的数据流分类模型都需要大量已标记样本来进行训练,但在实际应用中,对大量样本标记的成本相对较高。针对此问题,提出了一种基于半监督学习的数据流混合集成分类算法SMEClass,选用混合模式来组织基础分类器,用K个决策树分类器投票表决为未标记数据添加标记,以提高数据类标的置信度,增强集成分类器的准确度,同时加入一个贝叶斯分类器来有效减少标记过程中产生的噪音数据。实验结果显示,SMEClass算法与最新基于半监督学习的集成分类算法相比,其准确率有所提高,在运行时间和抗噪能力方面有明显优势。  相似文献   

14.
基于相关性分析的微阵列数据集成分类研究   总被引:1,自引:0,他引:1  
基于微阵列数据的肿瘤诊断方法有望在不久的将来成为临床医学上一种快速且有效的分子层肿瘤诊断方法,但由于微阵列数据存在高维小样本的特点,因而对传统的分类方法提出了挑战,为此研究人员开始关注于性能更好的集成分类算法.针对现有的微阵列数据集成分类算法分类精度不高、计算量过大等问题,提出了一种基于相关性分析的微阵列数据集成分类算法.该算法可以通过计算训练子集间的相关性挑选出差异度最大的一组子集来进行训练,有效地增强了集成中的多样性.应用支持向量机作为基分类器,在急性白血病与结肠癌数据集上的实验结果表明了所提算法的有效性和可行性.同时,测试了算法在不同参数设置下的性能,测试结果为合理的参数设置提供了参考依据.  相似文献   

15.
基于增量式遗传算法的分类规则挖掘   总被引:11,自引:1,他引:11  
分类知识发现是数据挖掘的一项重要任务,目前研究各种高性能和高可扩展性的分类算法是数据挖掘面临的主要问题之一。将遗传算法与分类规则挖掘问题相结合,提出了一种基于遗传算法的增量式的分类规则挖掘方法,并通过实例证明了该方法的有效性。此外,还提出了一种分类规则约简方法,使挖掘的结果更简洁、更易理解。  相似文献   

16.
RFID数据流随着时间而不断变化,捕捉其中蕴含的变化可以用于检测有意义事件的发生.提出了一种捕获数据流事件的算法--CECD,通过分析聚类结果分布变化和值域中产生的偏差检测数据流中蕴含的变化,同时采用组合分类技术对变化进行分类,捕获观察到的事件或现象的特性,建立事件与响应的映射关系.实验证明提出的框架可以高效检测数据流上的变化,与不借助变化检测的单纯基于规则的事件检测方法相比可以更准确地捕获事件.  相似文献   

17.
按照不同不平衡数据集在面对四类分类情况时侧重点的不同,构造出一种适用于不同特征不平衡数据的分类评价指标,并围绕此指标调整弱分类器权重及样本权重,改进集成算法中的AdaBoost算法,使其自适应不同特征的不平衡数据集分类.选择决策树算法作为基分类器算法进行仿真实验,发现使用AdaBoost算法和GBDT算法后准确率降幅较大,而改进的PFBoost算法能够在保证准确率的情况下显著提升F1值和G-mean值,且在绝大多数数据集上的F1值和G-mean值提升幅度远超其它两种集成算法.  相似文献   

18.
为了提高人民生活质量,政府部门不断加强水质管理,然而人工分类方法无法满足实时处理的需求,传统机器学习方法的分类准确率又不够高。集成学习使用多种学习算法来获得比单一学习算法更好的预测性能。首先,对集成学习进行概述,简要介绍了Bagging和Boosting算法,并提出基于协方差自适应调整的进化策略算法(CMAES)的集成学习方法。接着,介绍了数据处理方式、模型评估方法和评价指标。最后,用CMAES集成学习方法对逻辑回归、线性判别分析、支持向量机、决策树、完全随机树、朴素贝叶斯、K-邻近算法、随机森林、完全随机树林、深度级联森林十种模型进行集成。实验结果表明,CMAES集成学习方法优于所有其他模型,该方法将继续被应用到未来的研究之中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号