首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warm compaction and room temperature compaction were applied to prepare bonded Nd-Fe-B magnets. The results indicated that the density of magnet was determined by the compaction pressure and warm compaction temperature, whereas, the thermosetting temperature could hardly affect the density of magnet. The mechanical properties of magnets were the best when the thermosetting temperature was 200 ℃. The Br, Hcb, and (BH)max of warm compaction magnet were higher than those of room compaction. When the warm compa...  相似文献   

2.
研究了在取向磁场下由HDDR磁粉注射成型的各向异性粘结NdFeB磁体,分析了粘结剂和添加剂对各向异性粘结NdFeB磁体的密度、磁性能以及抗压强度的影响.通过磁粉表面改性,磁粉的抗氧化性能以及磁体的磁性能都得到提高.比较了6种粘结剂对磁体性能的影响,从中得到比较理想的粘结剂,并且考察了抗氧剂以及润滑剂加入量对于磁体性能的影响.试验中,混炼温度为205~215 ℃,注射温度为265℃,注射压力为5~6 MPa,保压时间为5 s,模具加热温度为80℃.制得的磁体的性能为:Br=0.72 T,iHc=983 kA/m,(BH)max=75 kJ/m3.  相似文献   

3.
使用放电等离子烧结(SPS)制备致密的纳米晶交换耦合Nd_2Fe_(14)B/α-Fe永磁合金.研究烧结温度、时间、压力对合金磁性能和显微组织的影响.结果表明,随温度、压力的升高,密度增大,磁能积增加;但温度过高或时间过长,使得晶粒长大,导致矫顽力降低.在烧结压力为500 MPa,烧结温度为700 ℃保温3 min后,得到密度为7.6 g/cm~3,晶粒细小的致密块体,其磁性能为:B_r=0.81 T,H_(ci) =856 kA·m~(-1),(BH)_m =106 kJ·m~(-3),其晶粒大小约20 nm.  相似文献   

4.
为了研究纳米晶Nd-Fe-B磁体的热变形机理,在不同温度下对快淬粉进行热压热变形处理.通过分析不同温度下热变形过程中应力和磁体应变的变化,以及磁性能和SEM测试,研究了温度对热变形磁体性能和微观结构的影响,分析了热变形过程的热变形机理.结果表明,纳米晶磁体存在最佳的热压温度和热变形温度.当热压温度为550℃,热变形温度...  相似文献   

5.
A novel anisotropic Nd-Fe-B flexible bonded magnet with epoxy resin lubricant was prepared by the two-step method to enhance its performance. Temperature characteristics of epoxy resin and its effect on magnetic properties and preparation of anisotropic Nd-Fe-B flexible bonded magnets were investigated and optimized. DOA of aligned flexible bonded magnets with epoxy resin lubricant increases significantly due to epoxy resin lower viscosity and subsequent better powder particles lubrication at a certain aligning temperature. Meanwhile, Hirr decreases sharply due to improved oxidation resistance of epoxy resin fully encapsulating magnetic powder during magnetic alignment process. Utilizing 1 wt% optimized encapsulating epoxy resin and heating unaligned flexible bonded magnets to 80 °C for 30 min during magnetic alignment resulted in the largest Δ(BH)max and ΔDOA. Δ(BH)max increased to over 126% along with ΔDOA increase to over 75%, much higher compared with unaligned flexible bonded magnets prepared exclusively by calendering.  相似文献   

6.
利用熔体快淬法和品化退火工艺制备了纳米晶复合NdFeB永磁粘结磁体,研究了添加Zr元素对磁体室温磁性能和温度稳定性的影响.结果表明,添加3at%Zr元素能明显提高磁体的矫顽力和最大磁能积.在淬速18 m/s、退火温度640℃下制备的Nd_(9.5_Fe_(76)Co_5Zr_3B_(6.5)粘结磁体具有良好的综合磁性能,即剩磁为0.71 T,矫顽力为652 kA/m,最大磁能积为80kJ/m~3.适量添加Zr元素可以有效改善磁体的温度稳定性,在20~150℃,纳米晶复合Nd_95Fe_(76)Co_5Zr_3B_(6.5)粘结磁体的剩磁温度系数为-0.13%/℃,内禀矫顽力温度系数为-0.35%/℃;在150℃时效100h后,不可逆磁通损失为-4.50%.  相似文献   

7.
The advent of neodymium-iron-boron materials having excellent magnetic properties and potential economic advantages has initiated a new era in permanent magnet technology. One method of making these magnets is by the rapid solidification process. It is typically carried out by melt spinning, which produces a highly stable, dmagnetically hard microstructure powder, directly from the melt. This can be used for bonded magnet applications. Alternatively, this powder can be hot pressed to produce fully dense isotropic magnets with energy products up to 15 MGOe. Anisotropic magnets with energy products ranging up to 50 MGOe can be produced by thermomechanical orientation or hot deformation process. Current processing and properties of Magnequench (General Motors) materials are reviewed, das well as the applications and advances of these materials. The advances include high-temperature bonded magnet and high-energy product anisotropic bonded and fully dense magnets.  相似文献   

8.
The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.  相似文献   

9.
研究了两种不同剩磁、不同内禀矫顽力的烧结Nd Fe-B磁体在Sm- Co磁路中的热静态充磁,结果表明,在约290℃下以低于4428 Oe的弱气隙磁场即可实现各种烧结Nd-Fe-B磁体的饱和充磁.这可能是因为烧结Nd-Fe-B磁体在温度为T=Tc(20~30℃)下磁化率达到最大值的缘故.本文还用二维有限元软件计算了Sm-Co磁路在290℃下的气隙磁场.  相似文献   

10.
Bonded NdFeB magnets were prepared by compression molding. The effect of preparation technology on their magnetic and mechanical properties was studied through the analysis of density, Br Hcj, (BH)max, bending strength, and compressive strength of the bonded magnets. The results showed that the magnetic properties decreased with increasing binder content, whereas the mechanical properties increased. Brand (BH)max increased with rising pressure, whereas Hcj decreased. For a fixed mass fraction of the binder, the optimal pressure was 620 MPa and the best thermosetting temperature was 160℃. These conditions made the bonded magnets have the optimal mechanical properties. Scanning electron microscopy (SEM) analyses of the fracture surfaces indicated that the epoxy resin bonded magnets exhibited brittle behavior.  相似文献   

11.
Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model.  相似文献   

12.
内禀矫顽力Hcj对Nd-Fe-B磁体温度稳定性的影响   总被引:1,自引:0,他引:1  
本文研究了具有相同成分但由不同工艺制备的Nd-Fe-B磁体的内禀矫顽力Hcj对磁体温度稳定性的影响。研究表明:同成分的磁体由于不同的工艺制备导致了磁体的显微结构的不同。而磁体的显微结构的不同又导致了磁体具有不同的磁性能。在同成分的磁体中,矫顽力高的磁体具有较低的矫顽力温度系数和不可逆磁通损失。同时研究还表明磁体的可逆磁通损失与磁体矫顽力Hcj关系不大,主要由成分决定。  相似文献   

13.
Ring-shaped (RS) polymer-bonded magnets were produced from a mixture of an isotropic nanocrystalline Nd-Fe-B powder with a nominal composition of 59.8 wt.% Fe, 29 wt.% Nd, 5 wt.% Zr, 4.8 wt.% Co and 1.4 wt.% B and a variety of epoxy resins as binders, using a compaction-molding technique. The morphology and average particle size of the powders are determined by an SEM. The magnetic properties of the magnets were measured using a permeameter. Magnetic flux on the surface of the magnets was determined by a Gauss meter. The mechanical properties of the RS specimens were determined using a tensile fracture strength (FS) test. The effects of polymer type and amount, hardener amount, applied pressing pressure and curing temperature and time on FS were investigated. The experimental results showed that at optimal conditions of 8 wt.% solid epoxy, 3.5 wt.% solid hardener, a pressing pressure of 900 MPa and a curing time of 8 h at 170 °C, a maximum tensile strength of?~?36 MPa was achieved. Surface magnetic flux uniformity in optimal mechanical conditions was also found to be optimum at around?±?40 G, which is one of the best flux uniformities in bonded magnets.  相似文献   

14.
采用温压工艺制备粘结NdFeB磁体,发现温压技术可以有效地提高牯结磁体的密度.改善磁体磁性能.研究表明:温压效果与温压温度的选择和温压压力密切相关.通过对温压机理的分析,发现最佳温压温度由粘结剂的软化点、粘度和固化点三个因素共同决定.而随着温压压力的升高,粘结NdFeB磁体的密度和磁件能增大,并在压力为650 MPa时得到了粘结磁体磁能积的最大值(50.43 kJ/m~3).  相似文献   

15.
NdFeB磁体热稳定性较差,在较高温度使用时不可避免会产生磁通不可逆损失。本文通过讨论,提出一种用来评估磁体热稳定性的方法。文中提出的无量纲算式,较好地说明了磁体磁通不可逆损失与磁体矫顽力、方形度、使用温度、磁体规格之间的关系,可对磁通不可逆损失做出大致的预测评估。  相似文献   

16.
高性能钕铁硼磁体广泛应用于各个领域。当Nd-Fe-B磁粉的晶粒尺寸接近单畴临界尺寸时,其矫顽力最大。化学法制备Nd-Fe-B磁粉可以很好地控制磁粉的微观结构和晶粒尺寸。同时,金属盐作为前驱体和简单的工艺流程可以降低成本和能源损耗。介绍了几种化学法制备Nd-Fe-B磁粉,分别为溶胶凝胶法、自燃烧法、微波辅助燃烧法、热分解法和机械化学法。研究了这些化学法的制备工艺和反应机理。最后,对不同化学方法合成的Nd-Fe-B磁粉的显微组织进行了对比分析,阐述了微观组织与磁性能之间的联系,展望了磁性材料未来的发展趋势。  相似文献   

17.
提出了一种新的雾化喷涂沉积(SCD)方法,在Nd-Fe-B磁体表面均匀沉积TbF3粉末,同时通过晶界扩散过程(GBDP)将Tb元素引入到磁体中。用这种方法(SCD+GBDP)处理厚度达5 mm的钕铁硼磁体。研究了TbF3涂层增重比、扩散时间和扩散温度对烧结磁体组织和磁性能的影响。样品扩散温度和时间为940 ℃和10 h,退火温度和时间为480 ℃和5 h。TbF3增重比(w)从0%增加到0.8%时,磁体的矫顽力从1201 kA/m 提高到1930 kA/m,剩磁下降约0.01 T。研究发现,随着TbF3增重比的增加,磁体的矫顽力先增大后减小。SEM结果表明,在Nd2Fe14B晶粒边界区域,Tb取代Nd形成(Nd, Tb)2Fe14B核壳相。晶界相和核壳相中较高的磁晶各向异性对矫顽力的增强有积极的促进作用。核壳相的分布和浓度对矫顽力有密切的影响。当TbF3增重比大于2.4%时,靠近磁体表面区域的晶界扩散明显增强。元素的SEM图像显示,进入磁体的Tb越多,晶核内的Tb浓度就越高。此外,大量Nd-F/Nd-O-F相的形成导致晶界相不像w=0.8% 时的样品那样连续,这可能是导致矫顽力下降的主要原因。  相似文献   

18.
Nd-Fe-B基纳米复合永磁材料矫顽力及其机制的研究进展   总被引:1,自引:0,他引:1  
重点探讨Nd-Fe-B基纳米复合永磁材料晶间交换耦合作用对有效各向异性和矫顽力的影响,对Nd-Fe-B基纳米复合永磁材料矫顽力机制进行讨论分析。硬磁相之间的耦合在反磁化场作用下将促进畴壁位移和磁距反转,不利于提高纳米复合永磁材料的矫顽力,在晶间形成适当的非磁性相减弱硬磁相之间的耦合作用可一定程度地提高纳米复合永磁材料矫顽力。除形核场、自钉扎作用外,晶粒内部缺陷的钉扎效应能阻止反磁化畴壁的位移,可进一步提高纳米复合永磁材料矫顽力  相似文献   

19.
The isotropic Sm2Fe17Nx magnetic powders were prepared by Hydrogenation-Disproportion-Desorption-Recombination (HDDR) process. The phase and microstructure evolutionary process of Sm-Fe alloy during the solidification, homogenization, HDDR and nitration processes were investigated by means of XRD, SEM, EDX and AFM. The results show that the homogeneous Sm2Fe17 alloy wassuccessfully obtained and the impurity phases and residual stress were well removed by heated at 1050 ℃ for 24 h. When heated at 800 ℃ for 1h in H2 of 0.1 Mpa, the alloy turns into SmHx and α-Fe with plenty of nanocrystals. After vacuumized at 800 ℃ for 2h the alloy recombines into Sm2Fe17 with a crystal grain size of about 85 nm.The lattice constant of the alloy increases and the expanding of the crystal cell reaches 6.28% after nitrified at 500 ℃ for 5 h. The magnetic property of isotropic bonded Sm2Fe17Nx magnets is Br=0.6704 T, Hcj = 1015 kA·m-1,( BH )max =73.7 kJ·m-3 with a density of 6.04 g·cm-3 .  相似文献   

20.
采用放电等离子烧结及后续热变形技术制备各向异性Nd-Fe-B磁体,研究烧结温度对放电等离子烧结Nd-Fe-B磁体微观组织和磁性能的影响。随着烧结温度在650~900°C范围内的升高,烧结态Nd-Fe-B磁体的剩磁、内禀矫顽力及最大磁能积呈现先升后降的趋势。在800°C下烧结所获得磁体的磁性能最佳。随后,对800°C烧结后具有最佳磁性能的磁体采用放电等离子烧结技术进行后续热变形处理。与初始吸氢-歧化-脱氢-再复合粉末和烧结态磁体相比,热变形磁体拥有更显著的各向异性和更好的磁性能。当热变形温度为800°C且压缩比为50%时,热变形磁体中的Nd2Fe14B晶粒呈扁平片状且不发生异常长大;磁体沿热压方向具有最佳的磁性能:Br、Hcj和(BH)max分别为1.16 T、449 k A/m和178 k J/m3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号