首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination, because the strong scattering exhibited by plasma-sprayed TBCs severely attenuates light transmitted through the TBC. This paper presents a new approach that indicates delamination in plasma-sprayed TBCs by utilizing a luminescent sublayer that produces significantly greater luminescence intensity from delaminated regions of the TBC. Freestanding coatings were produced with either a Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer. A NiCr backing layer was added to represent an attached substrate in some sections. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer, because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating from the Er-doped YSZ sublayer.  相似文献   

2.
7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.  相似文献   

3.
In this study, the effects of intrinsic feature of microstructure in thermal barrier coatings (TBCs) with and without vertical cracks on the microstructure and mechanical properties were investigated in cyclic thermal exposure. The hardness values of TBCs with vertical cracks were higher than those without vertical cracks, showing a good agreement with microstructure. The TBC prepared without vertical cracks using the 204-NS was delaminated after 250 cycles in the cyclic thermal exposure test. The TBCs with and without vertical cracks prepared with 204 C-NS and the TBC with vertical cracks prepared with 204 NS showed a sound condition without any cracking at the interface or spalling of top coat. After the thermal exposure of 381 cycles, the hardness values were increased in the survived TBC specimens, and the thicknesses of TGO layer for the TBCs with 204 C-NS and 204 NS were measured as in the ranges of 5-9 and 3-7 μm, respectively. In the thermal shock test, the advantage of vertical cracks for thermal durability of TBC could be well investigated, showing relatively longer sustained cycles in the TBCs with vertical cracks. The TBCs with vertical cracks are more efficient in improving thermal durability than those without vertical cracks in cyclic thermal exposure.  相似文献   

4.
Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, at these high operating temperatures, environmentally ingested airborne sand/ash particles melt on the hot TBC surfaces and form calcium–magnesium–aluminosilicate (CMAS) glass deposits. The molten CMAS glass penetrates the TBCs, leading to loss of strain tolerance and TBC failure. Here we demonstrate the use of the commercial manufacturing method of air-plasma-spray (APS) to fabricate CMAS-resistant yttria-stabilized zirconia (YSZ)-based TBCs containing Al and Ti in solid solution. Results from thermal stability studies of these new TBCs and CMAS/TBC interaction experiments are presented, together with a discussion of the CMAS mitigation mechanisms. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency/performance gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context the versatility, ease of processing, and low cost offered by the APS method has broad implications for the design and fabrication of next-generation CMAS-resistant TBCs for future engines.  相似文献   

5.
《Acta Materialia》2001,49(9):1565-1575
Thermal barrier coating (TBC) specimens have been prepared by plasma spraying. A vacuum plasma spray (VPS) MCrAlY bond coat and atmospheric plasma spray (APS) zirconia top coat were deposited onto a nickel superalloy substrate. The stiffness of detached top coats was measured by cantilever bending and also by nanoindentation procedures. Measurements were made on specimens in the as-sprayed state and after various heat treatments. Significant changes were detected in the Young's modulus of the top coat as a result of the heat treatments. The rate of sintering was found to be a function not only of the temperature but also of whether or not the coating was attached to the substrate during the heat treatment. This influences the stress state in the coating. A previously-developed numerical model has been modified in order to incorporate the effects of top-coat stiffening on the development of stress within the TBC system during exposure to high temperature. It is expected that sintering of the top coat will lead to increases in the driving force for debonding at the interface between the top coat and the bond coat. This effect may be at least partly responsible for the spallation of top coats which commonly afflicts TBCs after periods under service conditions.  相似文献   

6.
TBC experience in land- based gas turbines   总被引:1,自引:0,他引:1  
This paper summarizes prior and on-going machine evaluations of thermal barrier coatings (TBC) for power generation, that is large industrial gas turbine applications. Rainbow testing of TBCs on turbine nozzles, shrouds, and buckets are described along with a test of combustor liners. General Electric Power Generation has conducted more than IS machine tests on TBC turbine nozzles with various coatings. TBC performance has been quite good, and additional testing, including TBCs on shrouds and buckets, is continuing. Included is a brief comparison of TBC requirements for power generation and aircraft turbines.  相似文献   

7.
Thermal diffusivities of air plasma sprayed (APS) thermal barrier coatings (TBCs) were measured by the laser flash method. The data were used to calculate thermal conductivity of TBCs when provided with density and specific heat data. Due to the complicated microstructure and other processing-related parameters, thermal diffusivity of TBCs can vary as much as three- to four-fold. Data collected from over 200 free-standing ZrO2-7-8wt.%Y2O3 TBCs are presented. The large database gives a clear picture of the expected “band” of thermal diffusivity values. When this band is used as a reference for thermal diffusivity of a specific TBC, the thermal transport property of the TBC can be more precisely described. This database is intended to serve researchers and manufacturers of TBCs as a valuable resource for the evaluation of TBCs.  相似文献   

8.
A modified four-point bending test has been employed to investigate the interfacial toughness of atmospheric plasma sprayed (APS) yttria stabilised zirconia (YSZ) thermal barrier coatings (TBCs) after isothermal heat treatments at 1150 °C. The delamination of the TBCs occurred mainly within the TBC, several to tens of microns above the interface between the TBC and bond coat. X-ray diffraction analysis revealed that the TBC was mainly tetragonal in structure with a small amount of the monoclinic phase. The calculated energy release rate increased from ~ 50 J/m− 2 for as-sprayed TBCs to ~ 120 J/m− 2 for the TBCs exposed at 1150 °C for 200 h with a loading phase angle about 42°. This may be attributed to the sintering of the TBC. X-ray micro-tomography was used to track in 3D the evolution of the TBC microstructure non-destructively at a single location as a function of thermal exposure time. This revealed how various types of imperfections develop near the interface after exposure. The 3D interface was reconstructed and showed no significant change in the interfacial roughness after thermal exposure.  相似文献   

9.
Thermal barrier coatings (TBCs) often encounter temperature cycling in the course of normal operation. In the absence of actual or simulated engine test facilities, accelerated furnace thermal cycling experiments are frequently devised to evaluate the response of various TBCs. This study, which deals with yttria-stabilized and magnesia-stabilized zirconia systems, shows that the performance of a TBC is significantly governed by the severity of the time-temperature schedule employed. More importantly, the ranking of the two zirconia-base TBCs also is influenced by the adopted thermal cycling test schedule. These findings have ramifications in the design of suitable accelerated tests for TBC evaluation.  相似文献   

10.
Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.  相似文献   

11.
Ceramic thermal barrier coatings (TBCs) are a very important technology for protecting the hot parts of gas turbines (GTs) from a high-temperature environment. The coating stress generated in the operation of GTs brings cracking and peeling damage to the TBCs. Thus, it is necessary to evaluate precisely such coating stress in a TBC system. We have obtained a stress-strain curve for a freestanding ceramic coat specimen peeled from a TBC coated substrate by conducting the bending test. The test results have revealed that the ceramic coating deforms nonlinearly with the applied loading. In this study, an inelastic constitutive equation for the ceramic thermal barrier coatings deposited by APS is developed. The obtained results are as follows: (1) the micromechanics-based constitutive equation was formulated with micro crack density formed at splat boundary, and (2) it was shown that the numerical results for a nonlinearly deformed beam simulated by the developed constitutive equation agreed with the experimental results obtained by cantilever bending tests.  相似文献   

12.
Determination of interfacial properties of thermal barrier coatings (TBCs) is very important for designing and evaluating the durability of TBCs. A new method combining a simple shear test and an inverse finite element analysis was developed and applied to measure the interfacial properties of two flame-sprayed yttria-stabilized zirconia TBCs. Nanoindentation testing was performed to determine the mechanical properties of different materials of the TBC systems. Variation of the lateral force during the shear test was recorded and analyzed to obtain the nominal ultimate shear strength of TBCs. The interfacial properties, namely fracture energy and stress intensity factor (mode II), of different TBC systems under both as-deposited and heat-treated conditions were determined through inverse finite element analysis.  相似文献   

13.
Thick thermal barrier coatings (TBCs), consisting of a CoNiCrAlY bond coat and yttria-partially stabilized zirconia top coat with different porosity values, were produced by air plasma spray (APS). The thermal fatigue resistance limit of the TBCs was tested by furnace cycling tests (FCT) according to the specifications of an original equipment manufacturer (OEM). The morphology, residual stresses, and micromechanical properties (microhardness, indentation fracture toughness) of the TBC systems before and after FCT were analyzed. The thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling; nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/top coat interface. The failure mechanism of thick TBCs was found to be similar to that of conventional thin TBC systems made by APS.  相似文献   

14.
Pratt & Whitney has accumulated more than three decades of experience with thermal barrier coatings (TBCs). These coatings were originally developed to reduce surface temperatures of combustors of JT8D gas turbine engines to increase the thermal fatigue life of the components. Continual improvements in de-sign, processing, and properties of TBCs have extended their applications to other turbine components, such as vanes, vane platforms, and blades, with attendant increases in performance and component du-rability. Plasma-spray-based generation I (Gen I) combustor TBCs with 7 wt % yttria partially stabilized zirconia deposited by air plasma spray (APS) on an APS NiCoCrAlY bond coat continues to perform ex-tremely well in all product line engines. Durability of this TBC has been further improved in Gen II TBCs for vanes by incorporating low-pressure chamber plasma-sprayed NiCoCrAl Y as a bond coat. The modi-fication has improved TBC durability by a factor of 2.5 and altered the failure mode from a “black fail-ure” within the bond coat to a “white failure” within the ceramic. Further improvements have been accomplished by instituting a more strain-tolerant ceramic top layer with electron beam/physical vapor deposition (EB-PVD) processing. This Gen III TBC has demonstrated exceptional performance on rotating airfoils in high-thrust-rated engines, improving blade durability by three times through elimination of blade creep, fracture, and rumpling of metallic coatings used for oxi-dation protection of the airfoil surfaces. A TBC durability model for plasma-sprayed as well as EB-PVD systems is proposed that involves the accumulation of compressive stresses during cyclic thermal expo-sure. The model attempts to correlate failure of the various TBCs with elements of their structure and its degradation with thermocyclic exposure.  相似文献   

15.
The thermal stability and failure mechanism of thick thermal barrier coatings (TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems with thickness of about 2000 µm in the top coat were prepared by an air plasma spray (APS) on the bond coat of about 150 µm in thickness prepared by APS. The adhesive strength values of the as-prepared TBCs with and without vertical type cracks were determined to be 24.7 and 11.0 MPa, respectively, indicating the better interface stability in the TBC with vertical type cracks. The TBC with vertical type cracks shows a better thermal durability than that without vertical type cracks in the thermal cyclic exposure and thermal-shock tests. The hardness values of the as-prepared TBCs with and without vertical type cracks were found to be 6.6 and 5.3 GPa, respectively, which were increased to 9.5 and 5.5 GPa, respectively, after the cyclic thermal exposure tests. These results indicate that the vertical type cracks developed in the top coat are important in improving the lifetime performance of thick TBC in high temperature environment.  相似文献   

16.
Airborne sand particles that deposit on thermal barrier coatings (TBCs) in gas-turbine engines melt and form calcium–magnesium–aluminosilicate (CMAS) glass, which attacks the TBCs. A new approach for mitigating CMAS attack on TBCs is presented, where up to 20 mol.% Al2O3 and 5 mol.% TiO2 in the form of a solid solution is incorporated into Y2O3-stabilized ZrO2 (YSZ) TBCs. The fabrication of such TBCs with engineered chemistries is made possible by the solution-precursor plasma spray (SPPS) process, which is uniquely suited for depositing coatings of metastable ceramics with extended solid-solubilities. Here, the TBC serves as a reservoir of Al and Ti solutes, which are incorporated into the molten CMAS glass that is in contact with the TBC. This results in the crystallization of the CMAS glass and the attendant arrest of the penetrating CMAS front. This approach could also be used to mitigate attack by other types of foreign deposits (salt, ash, and contaminants) on TBCs.  相似文献   

17.
Further advances in Thermal Barrier Coating (TBC) design are linked with the evolution of numerical models for TBCs. The present paper, therefore, enhances the idea of a currently available FEM package (OOF) that has been designed for microstructural level simulations. The approach of Extended FEM (XFEM) is incorporated in an in-house developed program to account for the existence of cracks in TBCs; both for stress-strain analysis and for heat transfer analysis. The new XFEM program is then employed to carry out the analyses of a YSZ deposit and a multilayered TBC to predict the effective Young's moduli, the overall thermal conductivities, and to assess the fracture behavior of the coating.  相似文献   

18.
The elastic properties of thermal barrier coatings (TBCs) are important for modelling the lifetime of these coatings. A new test setup has been developed to measure the system modulus of electron-beam enhanced physical vapour deposited (EB-PVD) TBC coatings by miniaturized bend tests.Due to the brittleness, low stiffness and small thickness of the top coat and its complex microstructure, it is difficult to measure its Young's modulus by standard mechanical testing. For this reason, a special sample material has been prepared which consists of a 1 mm thick layer of EB-PVD TBC. This material was isothermally heat treated for different times at 950 °C, 1100 °C and 1200 °C and then tested in a specially developed miniaturized bend test. The bend test setup permits mechanical tests with a high resolution in stress and strain, where the strain is measured by digital image correlation. So the stiffness of the free-standing TBC samples could be measured with a high accuracy and the sintering behaviour of the EB-PVD TBC and the consequent rise of Young's modulus could be determined. The results show a significant increase of the system modulus with heat treatment time and temperature caused by sintering of the coating. An activation energy of 220 kJ/mol for the process has been determined.In addition, the material was tested by nanoindentation in order to measure Young's modulus on a local scale, and the porosity of the samples was determined by quantitative image analysis.  相似文献   

19.
NiCoCrAlTaY bond coat was deposited on pure nickel substrate by low pressure plasma spraying(LPPS), and ZrO2-8%Y2O3 (mass fraction) nanostructured and ZrO2-7%Y2O3 (mass fraction) conventional thermal barrier coatings(TBCs) were deposited by air plasma spraying(APS). The thermal shock behaviors of the nanostructured and conventional TBCs were investigated by quenching the coating samples in cold water from 1 150, 1 200 and 1 250 ℃, respectively. Scanning electron microscopy(SEM) was used to examine the microstructures of the samples after thermal shock testing. Energy dispersive analysis of X-ray(EDAX) was used to analyze the interface diffusion behavior of the bond coat elements. X-ray diffractometry(XRD) was used to analyze the constituent phases of the samples. Experimental results indicate that the nanostructured TBC is superior to the conventional TBC in thermal shock performance. Both the nanostructured and conventional TBCs fail along the bond coat/substrate interface. The constituent phase of the as-sprayed conventional TBC is diffusionless-transformed tetragonal(t′). However, the constituent phase of the as-sprayed nanostructured TBC is cubic(c). There is a difference in the crystal size at the spalled surfaces of the nanostructured and conventional TBCs. The constituent phases of the spalled surfaces are mainly composed of Ni2.88Cr1.12 and oxides of bond coat elements.  相似文献   

20.
The influence of bond coat composition on the spallation resistance of plasma-sprayed thermal barrier coatings (TBCs) on single-crystal René N5 substrates was assessed by furnace thermal cycle testing of TBCs with various vacuum plasma spray (VPS) or air plasma-spray (APS) MCrAlX (M=Ni and/or Co; and X=Y, Hf, and/or Si) bond coats. The TBC specimens with VPS bond coats were fabricated using identical parameters, with the exception of bond coat composition. The TBC lifetimes were compared with respect to MCrAlX composition (before and after oxidation testing) and MCrAlX properties (surface roughness, thermal expansion, hardness, and Young’s modulus). The average TBC spallation lifetimes varied significantly (from 174 to 344 1 h cycles at 1150 °C) as a function of bond coat composition. Results suggested a relationship between TBC durability and bond coat thermal expansion behavior below 900 °C. Although there were only slight differences in their relative rates of cyclic oxidation weight gain, VPS MCrAlX bond coats with better oxide scale adhesion provided superior TBC lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号