首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Locally excitatory globally inhibitory oscillator networks   总被引:3,自引:0,他引:3  
A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. In the network, an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. Computer simulations demonstrate that the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ground segregation in real time.  相似文献   

2.
Mining temporal network models from discrete event streams is an important problem with applications in computational neuroscience, physical plant diagnostics, and human–computer interaction modeling. In this paper, we introduce the notion of excitatory networks which are essentially temporal models where all connections are stimulative, rather than inhibitive. The emphasis on excitatory connections facilitates learning of network models by creating bridges to frequent episode mining. Specifically, we show that frequent episodes help identify nodes with high mutual information relationships and that such relationships can be summarized into a dynamic Bayesian network (DBN). This leads to an algorithm that is significantly faster than state-of-the-art methods for inferring DBNs, while simultaneously providing theoretical guarantees on network optimality. We demonstrate the advantages of our approach through an application in neuroscience, where we show how strong excitatory networks can be efficiently inferred from both mathematical models of spiking neurons and several real neuroscience datasets.  相似文献   

3.
4.
Localized handoff management architectures play a major role in wireless networks to deliver quality service to users on the move. Basically, handoff mechanisms are based on the received power levels and initiated when the serving base station is not able to provide sufficient resources or power during the call in progress. Nodes in wireless networks are battery based; detecting user power level is a critical task and consumes a lot of resources. To avoid this scenario, three handoff scenarios are proposed in this work: 1. Timer-based virtual structure handoff; 2. Localized cluster handoff; and 3. Overlay handoff. These mechanisms assign new channels or base stations and are involved in the process of delivering a sufficient quality of service to every user based on demand. Evidence is provided by numerical and simulation results to analyze parameters like handoff success ratio, throughput and delay.  相似文献   

5.
Localized fault-tolerant topology control in wireless ad hoc networks   总被引:2,自引:0,他引:2  
Topology control algorithms have been proposed to maintain network connectivity while improving energy efficiency and increasing network capacity. However, by reducing the number of links in the network, topology control algorithms actually decrease the degree of routing redundancy. As a result, the derived topology is more susceptible to node failures or departures. In this paper, we resolve this problem by enforcing k-vertex connectivity in the topology construction process. We propose a fully localized algorithm, fault-tolerant local spanning subgraph (FLSS), that can preserve k-vertex connectivity and is min-max optimal among all strictly localized algorithms (i.e., FLSS minimizes the maximum transmission power used in the network, among all strictly localized algorithms that preserve k-vertex connectivity). It can also be proved that FLSS outperforms two other existing localized algorithms in terms of reducing the transmission power. We also discuss how to relax several widely used assumptions in topology control to increase the practical utility of FLSS. Simulation results indicate that, compared with existing distributed/localized fault-tolerant topology control algorithms, FLSS not only has better power-efficiency, but also leads to higher network capacity. Moreover, FLSS is robust with respect to position estimation errors.  相似文献   

6.
Wireless sensor networks have been widely used in civilian and military applications. Primarily designed for monitoring purposes, many sensor applications require continuous collection and processing of sensed data. Due to the limited power supply for sensor nodes, energy efficiency is a major performance concern in query processing. In this paper, we focus on continuous kNN query processing in object tracking sensor networks. We propose a localized scheme to monitor nearest neighbors to a query point. The key idea is to establish a monitoring area for each query so that only the updates relevant to the query are collected. The monitoring area is set up when the kNN query is initially evaluated and is expanded and shrunk on the fly upon object movement. We analyze the optimal maintenance of the monitoring area and develop an adaptive algorithm to dynamically decide when to shrink the monitoring area. Experimental results show that establishing a monitoring area for continuous kNN query processing greatly reduces energy consumption and prolongs network lifetime.  相似文献   

7.
Several localized routing protocols guarantee the delivery of the packets when the underlying network topology is a planar graph. Typically, relative neighborhood graph (RING) or Gabriel graph (GG) is used as such planar structure. However, it is well-known that the spanning ratios of these two graphs are not bounded by any constant (even for uniform randomly distributed points). Bose et al. (1999) recently developed a localized routing protocol that guarantees that the distance traveled by the packets is within a constant factor of the minimum if Delaunay triangulation of all wireless nodes is used, in addition, to guarantee the delivery of the packets. However, it is expensive to construct the Delaunay triangulation in a distributed manner. Given a set of wireless nodes, we model the network as a unit-disk graph (UDG), in which a link uv exists only if the distance /spl par/uv/spl par/ is at most the maximum transmission range. In this paper, we present a novel localized networking protocol that constructs a planar 2 5-spanner of UDG, called the localized Delaunay triangulation (LDEL), as network topology. It contains all edges that are both in the unit-disk graph and the Delaunay triangulation of all nodes. The total communication cost of our networking protocol is O(n log n) bits, which is within a constant factor of the optimum to construct any structure in a distributed manner. Our experiments show that the delivery rates of some of the existing localized routing protocols are increased when localized Delaunay triangulation is used instead of several previously proposed topologies. Our simulations also show that the traveled distance of the packets is significantly less when the FACE routing algorithm is applied on LDEL, rather than applied on GG.  相似文献   

8.
9.
利用一种可以计算自治非线性系统周期解及周期的改进打靶法,求解了神经元电活动Rose—Hind-marsh(R-H)模型自发放电的周期解和周期;计算了周期放电的Floquet乘子并分析了周期解的分岔,如倍周期分岔,鞍-结分岔.研究结果有助于进一步理解神经放电模式转迁的动力学和生物学意义.  相似文献   

10.
Previous work has shown that networks of neurons with two coupled layers of excitatory and inhibitory neurons can reveal oscillatory activity. For example, B?rgers and Kopell (2003) have shown that oscillations occur when the excitatory neurons receive a sufficiently large input. A constant drive to the excitatory neurons is sufficient for oscillatory activity. Other studies (Doiron, Chacron, Maler, Longtin, & Bastian, 2003; Doiron, Lindner, Longtin, Maler, & Bastian, 2004) have shown that networks of neurons with two coupled layers of excitatory and inhibitory neurons reveal oscillatory activity only if the excitatory neurons receive correlated input, regardless of the amount of excitatory input. In this study, we show that these apparently contradictory results can be explained by the behavior of a single model operating in different regimes of parameter space. Moreover, we show that adding dynamic synapses in the inhibitory feedback loop provides a robust network behavior over a broad range of stimulus intensities, contrary to that of previous models. A remarkable property of the introduction of dynamic synapses is that the activity of the network reveals synchronized oscillatory components in the case of correlated input, but also reflects the temporal behavior of the input signal to the excitatory neurons. This allows the network to encode both the temporal characteristics of the input and the presence of spatial correlations in the input simultaneously.  相似文献   

11.
Population rate models provide powerful tools for investigating the principles that underlie the cooperative function of large neuronal systems. However, biophysical interpretations of these models have been ambiguous. Hence, their applicability to real neuronal systems and their experimental validation have been severely limited. In this work, we show that conductance-based models of large cortical neuronal networks can be described by simplified rate models, provided that the network state does not possess a high degree of synchrony. We first derive a precise mapping between the parameters of the rate equations and those of the conductance-based network models for time-independent inputs. This mapping is based on the assumption that the effect of increasing the cell's input conductance on its f-I curve is mainly subtractive. This assumption is confirmed by a single compartment Hodgkin-Huxley type model with a transient potassium A-current. This approach is applied to the study of a network model of a hypercolumn in primary visual cortex. We also explore extensions of the rate model to the dynamic domain by studying the firing-rate response of our conductance-based neuron to time-dependent noisy inputs. We show that the dynamics of this response can be approximated by a time-dependent second-order differential equation. This phenomenological single-cell rate model is used to calculate the response of a conductance-based network to time-dependent inputs.  相似文献   

12.
The analysis of neuronal information involves the detection of spatiotemporal relations between neuronal discharges. We propose a method that is based on the positions (phase offsets) of the central peaks obtained from pairwise cross-correlation histograms. Data complexity is reduced to a one-dimensional representation by using redundancies in the measured phase offsets such that each unit is assigned a "preferred firing time" relative to the other units in the group. We propose two procedures to examine the applicability of this method to experimental data sets. In addition, we propose methods that help the investigation of dynamical changes in the preferred firing times of the units. All methods are applied to a sample data set obtained from cat visual cortex.  相似文献   

13.
The control of telephony traffic is the task of network management and routing algorithms. In this paper, a study of two trunk groups carrying telephony traffic is used to show that instabilities can arise if there is a delay in getting feedback information for a network controller. The network controller seeks to balance the traffic in the two trunk groups, which may represent two paths from a source to a destination. An analysis shows how factors such as holding time, controller gain and feedback delay influence stability. Simulation of a two service case is also carried out to show that the same instabilities can arise.  相似文献   

14.
We propose a novel localized topology-control algorithm for each wireless node to locally select communication neighbors and adjust its transmission power accordingly such that all nodes together self-form a topology that is energy efficient simultaneously for both unicast and broadcast communications. We theoretically prove that the proposed topology is planar, which meets the requirement of certain localized routing methods to guarantee packet delivery; it is power-efficient for unicast - the energy needed to connect any pair of nodes is within a small constant factor of the minimum; it is also asymptotically optimum for broadcast - the energy consumption for broadcasting data on top of it is asymptotically the best among all structures constructed using only local information; it has a constant bounded logical degree, which will potentially save the cost of updating routing tables if used. We further prove that the expected average physical degree of all nodes is a small constant. To the best of our knowledge, this is the first localized topology-control strategy for all nodes to maintain a structure with all these desirable properties. Previously, only a centralized algorithm was reported. Moreover, by assuming that the node ID and its position can be represented in O(log n) bits for a wireless network of n nodes, the total number of messages by our methods is in the range of theoretical results are corroborated in the simulations.  相似文献   

15.
Synchronous rhythmic spiking in neuronal networks can be brought about by the interaction between E-cells and Icells (excitatory and inhibitory cells). The I-cells gate and synchronize the E-cells, and the E-cells drive and synchronize the I-cells. We refer to rhythms generated in this way as PING (pyramidal-interneuronal gamma) rhythms. The PING mechanism requires that the drive I(I) to the I-cells be sufficiently low; the rhythm is lost when I(I) gets too large. This can happen in at least two ways. In the first mechanism, the I-cells spike in synchrony, but get ahead of the E-cells, spiking without being prompted by the E-cells. We call this phase walkthrough of the I-cells. In the second mechanism, the I-cells fail to synchronize, and their activity leads to complete suppression of the E-cells. Noisy spiking in the E-cells, generated by noisy external drive, adds excitatory drive to the I-cells and may lead to phase walkthrough. Noisy spiking in the I-cells adds inhibition to the E-cells and may lead to suppression of the E-cells. An analysis of the conditions under which noise leads to phase walkthrough of the I-cells or suppression of the E-cells shows that PING rhythms at frequencies far below the gamma range are robust to noise only if network parameter values are tuned very carefully. Together with an argument explaining why the PING mechanism does not work far above the gamma range in the presence of heterogeneity, this justifies the "G" in "PING."  相似文献   

16.
In model networks of E-cells and I-cells (excitatory and inhibitory neurons, respectively), synchronous rhythmic spiking often comes about from the interplay between the two cell groups: the E-cells synchronize the I-cells and vice versa. Under ideal conditions-homogeneity in relevant network parameters and all-to-all connectivity, for instance-this mechanism can yield perfect synchronization. We find that approximate, imperfect synchronization is possible even with very sparse, random connectivity. The crucial quantity is the expected number of inputs per cell. As long as it is large enough (more precisely, as long as the variance of the total number of synaptic inputs per cell is small enough), tight synchronization is possible. The desynchronizing effect of random connectivity can be reduced by strengthening the E --> I synapses. More surprising, it cannot be reduced by strengthening the I --> E synapses. However, the decay time constant of inhibition plays an important role. Faster decay yields tighter synchrony. In particular, in models in which the inhibitory synapses are assumed to be instantaneous, the effects of sparse, random connectivity cannot be seen.  相似文献   

17.
Characterization of spatial fault patterns in interconnection networks   总被引:1,自引:0,他引:1  
Parallel computers, such as multiprocessors system-on-chip (Mp-SoCs), multicomputers and cluster computers, are consisting of hundreds or thousands multiple processing units and components (such as routers, channels and connectors) connected via some interconnection network that collectively may undergo high failure rates. Therefore, these systems are required to be equipped with fault-tolerant mechanisms to ensure that the system will keep running in a degraded mode. Normally, the faulty components are coalesced into fault regions, which are classified into two major categories: convex and concave regions. In this paper, we propose the first solution to calculate the probability of occurrences of common fault patterns in torus and mesh interconnection networks which includes both convex (-shaped, □-shaped) and concave (L-shaped, T-shaped, +-shaped, H-shaped) regions. These results play a key role when studying, particularly, the performance analysis of routing algorithms proposed for interconnection networks under faulty conditions.  相似文献   

18.
支持多故障恢复的MPLS快速重路由   总被引:1,自引:0,他引:1  
分析了传统MPLS快速重路由应对多故障环境的不足,提出一种支持MPLS域并发多故障时快速恢复的重路由策略.通过有限洪泛故障信息,使本地修复的节点掌握有限范围内节点、链路的可用性信息,并通过建立主,从备份路径,保证MPLS层有效的恢复及较快的切换速度.理论分析及实验结果表明了该方法的可行性和有效性.  相似文献   

19.
Ermentrout B 《Neural computation》2003,15(11):2483-2522
Synapses that rise quickly but have long persistence are shown to have certain computational advantages. They have some unique mathematical properties as well and in some instances can make neurons behave as if they are weakly coupled oscillators. This property allows us to determine their synchronization properties. Furthermore, slowly decaying synapses allow recurrent networks to maintain excitation in the absence of inputs, whereas faster decaying synapses do not. There is an interaction between the synaptic strength and the persistence that allows recurrent networks to fire at low rates if the synapses are sufficiently slow. Waves and localized structures are constructed in spatially extended networks with slowly decaying synapses.  相似文献   

20.
We develop geometric dynamical systems methods to determine how various components contribute to a neuronal network's emergent population behaviors. The results clarify the multiple roles inhibition can play in producing different rhythms. Which rhythms arise depends on how inhibition interacts with intrinsic properties of the neurons; the nature of these interactions depends on the underlying architecture of the network. Our analysis demonstrates that fast inhibitory coupling may lead to synchronized rhythms if either the cells within the network or the architecture of the network is sufficiently complicated. This cannot occur in mutually coupled networks with basic cells; the geometric approach helps explain how additional network complexity allows for synchronized rhythms in the presence of fast inhibitory coupling. The networks and issues considered are motivated by recent models for thalamic oscillations. The analysis helps clarify the roles of various biophysical features, such as fast and slow inhibition, cortical inputs, and ionic conductances, in producing network behavior associated with the spindle sleep rhythm and with paroxysmal discharge rhythms. Transitions between these rhythms are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号