首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qing Shang 《Fuel》2009,88(1):31-16
A particle stochastic trajectory model for turbulence-particle reaction interactions is proposed and formulated in the present paper. This model provides the basis for a comprehensive model of pulverized coal combustion. It is applied to the simulation of gas-particle turbulent flow and combustion in a pulverized coal-fired swirl combustor. The results are compared with the measured test data and those obtained by the particle stochastic trajectory model without considering turbulence-particle reaction interactions. The predicted gas temperature and species concentrations in the upstream region of the combustor are improved by utilizing the model with turbulence-particle reaction interactions.  相似文献   

2.
Y.S. Shen  A.B. Yu  P. Zulli 《Fuel》2009,88(2):255-323
The practice of blending coals for pulverized coal combustion is widely used in ironmaking blast furnace. It is desirable to characterize the combustion behaviour of coal blends and their component coals. A three-dimensional numerical model is described to simulate the flow and combustion of binary coal blends under simplified blast furnace conditions. The model is validated against the experimental results from a pilot-scale combustion test rig for a range of conditions, which features an inclined co-axial lance. The overall performance of coal blend and the individual behaviours of their component coals are analysed, with special reference to the influences of particle size and coal type. The synergistic effect of coal blending on overall burnout is examined. The results show that the interactions between component coals, in terms of particle temperature and volatile content, are responsible for the synergistic effect. Such synergistic effect can be optimized by adjusting the blending fraction. The model provides an effective tool for the design of coal blends.  相似文献   

3.
Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO2 concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 °C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O2/N2 (typical combustion) and O2/CO2 (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars.  相似文献   

4.
Physical structures and combustion properties of super fine pulverized coal particles of eight Chinese coals, Heshan subbituminous coals and Jincheng lean coals from two areas of China, have been investigated using accelerated surface area and porosimetry, thermobalance (TGA), and Fourier transform infrared spectrometer. Results showed that the particle specific surface area and pore volume increased greatly when the coal particle size was reduced. The higher the carbon content on a dry ash-free basis is, the larger the particle specific surface area and pore volume are. When the coal particle size decreases, the combustion process can be largely improved, ignition temperature is reduced, and SO2 emission from coal combustion is also lower.  相似文献   

5.
Advanced combustion kinetics models are of widespread use to predict carbon losses from coal combustion. However, those models cannot completely capture the complexity of the real phenomena affecting the fluid flow in a full-scale utility boiler, such as burner-to-burner interactions and bottom hopper vortexes or reversed-flows, and usually underpredict carbon in ash values. The use of CFD codes offers a more detailed treatment of the fluid dynamics involved in the boiler. However, most of them do not incorporate advanced kinetics submodels for char oxidation. In this paper, rank-dependent correlations and ash inhibition submodel have been coupled to a commercial CFD code, significantly improving carbon in ash predictions. Results from the simulation of the ASM Brescia power plant (Italy) for three different South-American coals are compared against plant laboratory values, using either the popular single film combustion model or the modified combustion model discussed in this paper.  相似文献   

6.
A model based on the Monte Carlo approach was developed to simulate the mixing and combustion behavior of a shallow coal-limestone fluidized bed combustor. The model involved the coupling of two sub-models: a combustion sub-model based on the two-phase concept of fluidization and a mixing sub-model based on our previously developed dynamic mixing model. The combustion sub-model considered both the volatile and char combustion. It assumed that the combustor consisted of three distinct phases, i.e., jet, bubble and emulsion, with combustion occurring only in the emulsion phase. The mixing sub-model considered the upward or downward movement of a coal particle in the bed as being governed by certain probability laws; these laws were, in turn, affected by the bubbling hydrodynamics. In all, the combustor simulation model took into consideration the effects of coal feed rate, coal size distribution, limestone size, air flow rate and combustor temperature on the combustor behavior. The simulation results included the dynamic response of coal concentration profile, coal size distribution, coal particle elutriation rate as well as the mixing status between the coal and limestone particles.  相似文献   

7.
双锥煤粉燃烧室在小容量工业锅炉中广泛采用水冷却方式,但随着市场对高容量锅炉需求的增加,双锥燃烧室体积增大、数量增多,如仍采用水冷却的方式将导致安装困难、水系统复杂等问题,亟需开发新的冷却方式。空气冷却形式具有结构简单、预热后的空气可以增加煤粉的着火稳定性等优点,需要考察其首次应用于双锥煤粉燃烧室中的效果。为了确定空气冷却式燃烧室燃烧和壁面冷却情况,采用数值模拟技术对14 MW工业锅炉燃烧室和炉膛进行三维建模,得到50%和100%两种负荷下不同内外二次风配风比例下燃烧室内部燃烧情况、金属壁面温度、出口火焰形状和炉膛充满度。结果表明:控制总空气过量系数不变,随着内二次风比例的逐渐增加,燃烧室内的平均温度逐渐降低;50%负荷下金属壁面温度随二次风比例的增加逐渐降低,100%负荷下金属壁面温度先降低后升高,这是内二次风助燃燃烧和外二次风的冷却共同作用的结果。随着内二次风比例的增加,金属壁面的高温区域逐渐后移,集中于后锥出口区域;在50%负荷下内二次风量占总空气量比例为0.4时,金属壁面具有最高温度930 K,100%负荷下内二次风量占总空气量比例为0.2时,壁面金属最高温度835K,2个最高温度均出现在后锥收缩段,据最高温度推荐壁面材料选取0Cr18Ni9,2种负荷下最高温度出现时燃烧室内的内二次风配风量为2 600 Nm3/h,应尽量使内二次风远离此配风量;50%负荷下燃烧室平均温度、金属壁面平均温度及最高温度均高于100%负荷,是空气冷却结构需要重点考察的工况。随着内二次风比例的逐渐增加,火焰长度先增加后减小,当内二次风过小时,出口气速较小,外二次风具有向中心的速度分量,火焰主要集中在炉膛前部。随着内二次风比例的增加,出口速度增大,火焰变长变细。但随着比例的继续增加,外二次风的轴向速度变小,出口火焰的旋流强度完全由二次风决定,出口旋流强度的增大导致了火焰的变短变粗,在2种负荷下,火焰长度较长时,内二次风比例为0.4~0.5。内外二次风比例为0.5∶0.5时,燃烧室内燃烧情况和壁面温度均匀稳定,火焰在炉膛内的充满度最好,是2个考察负荷下均较适合的运行参数。  相似文献   

8.
Levels of vibrations of the wall of a flow-type detonation chamber of an annular cylindrical geometry in the region of detonation-wave rotation and the noise at a distance of 1 m are measured. In the case of continuous spin detonation of a hydrogen—air mixture, these values are found not to exceed the values inherent in conventional turbulent combustion of the fuel with the same flow rate in the same chamber. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 5, pp. 101–112, September–October, 2006.  相似文献   

9.
Behavior of ignition and combustion of coal particle cluster under a quiescent condition was numerically simulated by solving balance equations of mass and enthalpy with combustion kinetic models of volatiles and char. Two-flame structure, one flame penetrating into the cluster and the other moving out of the cluster, was predicted during the combustion of coal particle cluster. Effects of radiative heat transfer, group number, ambient temperature, coal particle size, and oxygen concentration on ignition and combustion of coal particle clusters were also analyzed. Simulations indicated that the gas volume fraction of coal particle cluster increases with time after devolatilization. Gas velocity passing through the cluster surface varied significantly at volatile liberation. The ignition time delay was reduced with the increase of ambient temperature. The cluster devolatilization rate and char burning rate increased while the ignition time delay decreased with the increase of ambient oxygen concentration.  相似文献   

10.
In this paper, we developed a new method for preventing the spontaneous combustion of a coal stockpile covered by pulverized coal. This technique is based on the numerical-simulation analysis of endothermic/exothermic balance in coal stockpile. Depth and height are confirmed to be the main factors influencing the endothermic/exothermic balance in coal stockpiles and the hot-spot region is easily formed at a coal stockpile height of 1-1.5 m and a depth of 2-3 m, where there is the highest tendency for spontaneous combustion. The numerical simulation and the 120-day application test both confirm that the diffusion process of oxidation can be prevented and the coal oxidation reaction can be hindered by covering the surface of the hot region with pulverized coal. As a result, the coal spontaneous combustion is prevented effectively.  相似文献   

11.
张鑫  陈隆 《洁净煤技术》2020,26(2):66-72
高速煤粉燃烧器火焰喷射速度高达60~200 m/s,炉膛内火焰较长,对流换热比例提高,使得炉膛内温度分布均匀,没有传统低速煤粉燃烧器火焰短,炉膛内局部过热和结焦等缺点。笔者以14 MW高速煤粉燃烧器为研究对象,采用数值模拟的方法,研究旋流强度、二次风温度等关键参数对燃烧器内煤粉燃烧的影响,针对燃烧器内煤粉燃烧特点进行结构优化设计。对旋流强度研究结果表明,当旋流强度S=2.2、2.8、3.2及3.7时,燃烧器内回流区形状变化不大,从一次风喷口开始到旋流叶片位置结束,回流区环绕一次风管;最大回流量在一次风喷口附近,距离一次风喷口越远,回流量越小;旋流强度对一次风喷口附近最大回流量影响不大,喷口附近最大回流量均在0.45 kg/s左右,当距喷口超过一定距离(L/H<0.35)时,旋流强度对回流量的影响开始变得明显,表现为旋流强度越大,回流区末端回流量越大,回流区末端回流量最大为0.30 kg/s,最小为0.17 kg/s。研究燃烧器喷口处燃烧状态表明,喷口处火焰旋流强度为0.10~0.28,与入口旋流强度正相关,火焰喷射速度150 m/s,为中等旋流强度的高速旋流火焰;喷口中心区可燃性组分富集,缺氧,燃料和氧气分层分布。当旋流强度提高,喷口中心区可燃性组分浓度降低,CO浓度从11%降低到10%,H2浓度从1.65%降低到1.40%,焦炭浓度从0. 14%降低到0. 11%,喷口边缘O2浓度从13%降低到10%。旋流强度S=3.2和S=3.7时可燃组分和氧气浓度分布变化较小,说明旋流强度提高对燃烧的影响减弱。考察0、100和200℃下二次风温度对燃烧的影响,结果表明,当二次风温度提高,煤粉在燃烧器内的反应时间有所降低,从0.15 s降低到0.11 s,但燃烧器内的煤粉碳转化率提高20%,达到65%。对燃烧器结构进行优化,加入中心风,对比中心风直流和旋流与不加中心风3种状态,结果表明,加入旋流中心风和直流中心风后喷口中心区半径r≤75 mm范围内可燃组分浓度降低,采用直流时由于气流刚性较强,喷口中心区氧气浓度升高,采用旋流中心风对中心区氧浓度影响弱,对可燃组分浓度降低效果优于直流中心风。  相似文献   

12.
13.
M. Neville  A.F. Sarofim 《Fuel》1985,64(3):384-390
The distribution of sodium in the different sizes of fly ash produced during coal combustion provides useful insights into the vaporization and condensation mechanisms for sodium. For the residual fly ash, the departure of the concentration of sodium from an inverse square dependence on particle size can be used to infer the degree of sodium vaporization. For low-rank coals most of the sodium vaporizes at combustion temperatures <1900 K; at higher temperatures the release of sodium decreases as increasing amounts react with silica. The fraction of sodium condensing on the submicrometre fume is influenced both by the amount of total ash vaporized and by the Kelvin effect.  相似文献   

14.
无焰富氧燃烧是煤粉清洁燃烧技术的前沿发展方向之一,可在捕集高浓度CO2的同时显著降低NOx排放,并提升富氧燃烧稳定性和热力性能。计算流体力学(CFD)作为燃烧研究的重要手段之一,具有快捷、成本低和数据丰富等优点,有效促进了无焰富氧燃烧技术发展。基于笔者团队对煤粉富氧燃烧和无焰燃烧的多年研究积累,对近十几年来煤粉无焰富氧燃烧CFD模拟方法和模拟研究进展进行了总结:首先强调了煤粉无焰燃烧的试验和数学定义,其由于存在非均相反应而区别于气体燃料无焰燃烧;然后详述了煤粉无焰富氧燃烧CFD模拟方法进展,包括模拟流动、传热、燃烧和污染物生成方面的子模型和机理,其中考虑强烈烟气卷吸的可实现k-ε湍流模型、P1或DO辐射模型及针对富氧气氛修正的WSGG气体辐射模型、CPD挥发分析出模型、考虑湍流与化学反应交互的有限速率EDC均相燃烧模型、针对无焰及富氧燃烧开发验证的均相反应机理、考虑气化反应的多步表面焦炭非均相燃尽模型、含氮化学详细反应机理氮转化模拟、动态自适应反应机理加速算法等可显著提高煤粉无焰富氧燃烧的模拟精度和计算效率。总结了煤粉无焰富氧燃烧在基准对照试验、微观反应区域分析、宏观反应特征、污染物生成及大型化锅炉概念设计方面的模拟研究情况;最后以大涡模拟、燃烧模型、高精度反应机理及动态自适应反应机理、工业应用优化等角度展望了煤粉无焰富氧燃烧CFD研究的发展方向。  相似文献   

15.
This paper presents an experimental method for studying the fragmentation of coal particles during coal combustion in a fluidized bed and the quantitative fragmentation indexes of 10 typical Chinese coal ranks. The influences of a variety of factors such as the bed temperature, the size of coal particles, the coal rank and the fluidizing medium on the fragmentation index of coal particles are also studied. The research results show that the main reason for the fragmentation of coal particles is the primary fragmentation, and that the volatile matter can drastically influence the degree of fragmentation of coal particles.  相似文献   

16.
John G. Mathieson  Harold Rogers 《Fuel》2005,84(10):1229-1237
The former Broken Hill Proprietary Company Limited, along with its successors BlueScope Steel and BHP Billiton, like many of their iron and steel making counterparts, has had a long history of investigating pulverised coal injection and combustion under the conditions of blast furnace tuyere injection. A succession of pilot scale hot models and combustion test rigs have been constructed and operated at the company's Newcastle Laboratories beginning with the pilot scale hot raceway model in 1981. Each successive generation of test rig has attempted to provide a closer approximation to the actual blast furnace situation with the current test rig (1998 to present) seeking to promote an ‘expanding’ combusting coal plume. Test rig configuration is demonstrated to have a significant effect on coal burnout at a nominal transit time of 20 ms.The development of the combustion test rigs has been supported through the co-development of a range of sampling and measuring techniques and the application of a number of numerical combustion models.This paper reviews some of the milestones along the path of these investigations, the current understandings and what the future potentially holds. It's not solved yet!  相似文献   

17.
A mechanism of particles and condensable vapour deposition enabling simulation of the deposits composition and size has been developed. The results of deposit growth on heat transfer tubes during nine months of boiler firing by subbituminous coal containing 13.9 wt% of mineral matter are presented. It has been demonstrated that a 4 m deep front of most intensive deposition on the superheater tubes moves with time down the tubes bundle. The deposits grow quickly during the first three months of boiler operation, and then remain almost stable, reaching after nine months of operation a thickness of about 30 mm.  相似文献   

18.
Volatility and chemistry of trace elements in a coal combustor   总被引:11,自引:0,他引:11  
Rong Yan  Daniel Gauthier  Gilles Flamant 《Fuel》2001,80(15):2217-2226
The volatility of 16 trace elements (TEs) (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, Te, Tl, V, Zn) during coal combustion has been studied depending on the combustion conditions (reducing or oxidizing) and type of coal (high- or low-ash coal), together with their affinities for several active gaseous atoms: Cl, F, H, O, and S.

The elements can be divided into three groups according to their tendencies to appear either in the flue gases or in the fly ashes from a coal combustor:

Group 1: Hg and Tl, which are volatile and emitted almost totally in the vapor phase.

Group 2: As, Cd, Cu, Pb and Zn, which are vaporized at intermediate temperature and are emitted mostly in fly ashes.

Group 3: Co, Cr, Mn and V, which are hardly vaporized and so are equally distributed between bottom ashes and fly ashes. In addition, Sb, Sn, Se and Te may be located between Groups 1 and 2, and Ni between 2 and 3.

At 400 and 1200 K, the 16 TEs behave differently in competitive reactions with Cl, F, H, O and S in a coal combustor.  相似文献   


19.
罗伟 《洁净煤技术》2020,26(2):93-101
焦炭气化反应对空气深度分级工况下燃烧及污染物的生成具有重要影响。笔者采用滴管炉试验与数值计算相结合的方法,研究了主燃区过量空气系数SR1在1.2→0.6变化过程中,焦炭气化对空气深度分级工况下煤粉燃烧和NOx排放特性的影响规律。通过对比滴管炉试验数据与传统模型和改进模型(考虑焦炭气化)结果可知,传统模型对空气分级燃烧的还原性气氛预测存在一定缺陷,改进模型与试验结果较吻合。滴管炉试验及改进模型计算结果表明,空气深度分级工况下,主燃区极度缺氧,燃烧过程由最初的挥发分着火(R1和R2)和焦炭不完全氧化(R4)过渡到以焦炭气化反应(R5和R6)为主导的燃烧状态,大量CO生成,高浓度CO2逐渐被消耗,直至还原区段结束,随着燃尽风加入,O2含量增加,CO被迅速消耗(以R2为主),CO2生成。空气分级工况下NOx排放特性表现为:燃烧器附近NOx浓度高,伴随还原性气氛的形成,出现一定程度的下降后保持较低的NOx水平,随着燃尽风的加入,出现一定程度的"反弹",这是因为还原区结束时,一部分未完全被还原的氮中间体在燃尽风加入后被迅速氧化造成的。  相似文献   

20.
Zhou Hao  Cen Kefa  Mao Jianbo 《Fuel》2001,80(15):2163-2169
The present work introduces a way of optimizing the low NOx combustion using the neural network and genetic algorithms for pulverized coal burned utility boiler. The NOx emission characteristic of a 600 MW capacity boiler operated under different conditions is experimentally investigated and on the basis of experimental results, the artificial neural network is used to describe its NOx emission property to develop a neural network based model. A genetic algorithm is employed to perform a search to determine the optimum solution of the neural network model, identifying appropriate setpoints for the current operating conditions and the low NOx emission of the pulverized coal burned boiler is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号