首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Arias  J.J. Pis 《Fuel》2008,87(12):2753-2759
Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO2 ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO2/O2 of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO2/O2 mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO2-21%O2 is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO2/O2 mixtures.  相似文献   

2.
Fixed-bed combustion in a tube reactor is a useful procedure to exploit a large variety of biomasses obtaining accurate in-bed data. In this paper, the ignition front propagation velocity is experimentally studied in a counter-current process for eight different biomass fuels with a wide range of origins, compositions and packing properties. Air mass flow rate is the main operative parameter and clearly distinguishes three stages of combustion (oxygen-limited, fuel limited and cooling by convection). The impact of the excess air ratio is also analyzed. This parameter confirmed that the maximum front velocity is achieved under sub-stoichiometric conditions, where the cooling effects of excessive air are minimized. Other variables with a major influence on the ignition front velocity are moisture and ash content. Finally, an uncertainty analysis is included to determine the accuracy of the entire measurement process.  相似文献   

3.
The aim of the present study was to identify the key factors affecting the pelletizing pressure in biomass pelletization processes. The impact of raw material type, pellet length, temperature, moisture content and particle size on the pressure build up in the press channel of a pellet mill was studied using a single pellet press unit. It was shown that the pelletizing pressure increased exponentially with the pellet length. The rate of increase was dependent on biomass species, temperature, moisture content and particle size. A mathematical model, predicting the pelletizing pressure, was in good accordance with experimental data. It was shown that increasing the temperature resulted in a decrease of the pelletizing pressure. Infrared spectra taken from the pellets surface, indicated hydrophobic extractives on the pellet surface, for pellets produced at higher temperatures. The extractives act as lubricants, lowering the friction between the biomass and the press channel walls. The effect of moisture content on the pelletizing pressure was dependent on the raw material species. Different particle size fractions, from below 0.5 mm up to 2.8 mm diameter, were tested, and it was shown that the pelletizing pressure increased with decreasing particle size. The impact of pelletizing pressure on pellet density was determined, and it was shown that a pelletizing pressure above 200 MPa resulted only in minor increase in pellet density.  相似文献   

4.
The effects of fuel washing techniques on alkali release from biomass   总被引:2,自引:0,他引:2  
The influence of different washing techniques on the alkali release during pyrolysis of biomass is studied. After washing and drying, samples of wheat straw, wood waste and cellulose are subjected to a constant heating rate in a N2 atmosphere, and the release rate of alkali compounds from the sample is measured continuously by a surface ionization technique. Alkali is released from the untreated biomass in two temperature intervals: (1) in connection with the pyrolysis process taking place at 200-500°C, and (2) from the material remaining after pyrolysis at temperatures above 600°C. Separate vacuum pyrolysis experiments show that the alkali release is dominated by potassium-containing compounds, with minor contributions from sodium-containing compounds. The effect of water washing of the biomass is compared with a more thorough acid leaching technique. In the temperature range 200-500°C, washing with water reduces the alkali emission from wood waste and wheat straw by 5-30%, while acid leaching is more effective and reduces the emission by around 70%. Above 600°C where the vaporization of alkali compounds from untreated wheat straws increases sharply, the washing procedures are sufficient for a reduction in the measured alkali release by more than 90%. Experiments with pure cellulose (ash content 0.07%) indicate that the washing methods are ineffective in removing alkali bound to the organic structure of the biomass. The results support the conclusion from earlier studies that relatively simple washing techniques can improve the combustion properties of biomass fuels with a high ash content. For fuels with a lower ash content like woody biomass, the concentration of alkali bound to the organic structure limits the effect of the washing techniques.  相似文献   

5.
The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas.  相似文献   

6.
Many municipal waste combustors use preheated primary air in the first zone to dry the waste. In most cases the preheat temperature does not exceed 140 °C. In previous experiments it is found that at temperatures around 200 °C, in some circumstances, self- or spontaneous ignition can be achieved. Using preheated air can be a powerful tool to control the ignition and combustion processes in a waste combustion plant. To use this tool effectively, the influence of the preheated air on the fuel bed needs to be well understood. The present work is done to investigate in a systematically way the spontaneous ignition behaviour of a packed bed heated with a preheated air stream. Experiments on a lab scale packed bed reactor are carried out for various fuel types. Because MSW is an highly inhomogeneous fuel, wood and char are used as model fuels. To include the inhomogeneous character of MWS, also experiments are carried out with RDF. Parameters such as primary air flow velocity and temperature, addition of inert material, moisture content of the fuel (wood chips) and particle size (char) have been changed to see their effect on the spontaneous ignition temperature and on the minimum air temperature needed for ignition. The spontaneous ignition temperature is defined as the bed temperature at which a transition takes place from a negligible or slow fuel reaction rate to a rapid oxidation of either the volatiles or the solid fuel without an external source such as a spark or a flame. The minimum or critical air temperature is defined as the lowest air temperature at which ignition can be obtained. It is found that the type of fuel has influence on the ignition temperatures. Besides both the critical air temperature needed for the spontaneous ignition and the spontaneous ignition temperature increase with an increase in the primary air velocity (between 0.1 and 0.5  m/s) and increasing the added inert fraction (between 0 and 40 wt%), irrespective of the fuel type. The effect of air flow velocity and temperature and also the effect of inert on both the critical air temperature and the spontaneous ignition temperature can be explained qualitatively by using Semenov’s analysis of thermal explosions. Semenov’s theory is quantitatively applied to predict the spontaneous ignition and the critical air temperatures for wood.  相似文献   

7.
An overview of the chemical composition of biomass   总被引:6,自引:0,他引:6  
An extended overview of the chemical composition of biomass was conducted. The general considerations and some problems related to biomass and particularly the composition of this fuel are discussed. Reference peer-reviewed data for chemical composition of 86 varieties of biomass, including traditional and complete proximate, ultimate and ash analyses (21 characteristics), were used to describe the biomass system. It was shown that the chemical composition of biomass and especially ash components are highly variable due to the extremely high variations of moisture, ash yield, and different genetic types of inorganic matter in biomass. However, when the proximate and ultimate data are recalculated respectively on dry and dry ash-free basis, the characteristics show quite narrow ranges. In decreasing order of abundance, the elements in biomass are commonly C, O, H, N, Ca, K, Si, Mg, Al, S, Fe, P, Cl, Na, Mn, and Ti. It was identified that the chemical distinctions among the specified natural and anthropogenic biomass groups and sub-groups are significant and they are related to different biomass sources and origin, namely from plant and animal products or from mixtures of plant, animal, and manufacture materials. Respective chemical data for 38 solid fossil fuels were also applied as subsidiary information for clarifying the biomass composition and for comparisons. It was found that the chemical composition of natural biomass system is simpler than that of solid fossil fuels. However, the semi-biomass system is quite complicated as a result of incorporation of various non-biomass materials during biomass processing. It was identified that the biomass composition is significantly different from that of coal and the variations among biomass composition were also found to be greater than for coal. Natural biomass is: (1) highly enriched in Mn > K > P > Cl > Ca > (Mg, Na) > O > moisture > volatile matter; (2) slightly enriched in H; and (3) depleted in ash, Al, C, Fe, N, S, Si, and Ti in comparison with coal. The correlations and associations among 20 chemical characteristics are also studied to find some basic trends and important relationships occurring in the natural biomass system. As a result of that five strong and important associations, namely: (1) C-H; (2) N-S-Cl; (3) Si-Al-Fe-Na-Ti; (4) Ca-Mg-Mn; and (5) K-P-S-Cl; were identified and discussed. The potential applications of these associations for initial and preliminary classification, prediction and indicator purposes related to biomass were also introduced or suggested. However, future detailed data on the phase-mineral composition of biomass are required to explain actually such chemical trends and associations.  相似文献   

8.
An experimental study of flammability limits of LPG/air mixtures   总被引:1,自引:0,他引:1  
D.P Mishra  A Rahman 《Fuel》2003,82(7):863-866
The liquefied petroleum gas (LPG) is generally considered to be eco-friendly viable fuel not only in domestic sector but also for transport sector. The inhibition of LPG-air premixed flames is a very important practical problem that has received relatively little attention. This paper is concerned with experimental determination of the flammability limits of LPG-air mixture. The standard procedure suggested by US Bureau of mines has been adopted for the present studies for determining the flammability limit of LPG-air mixture. The lower flammability limit (LFL) is found to be 1.81% and upper flammability limit (UFL) is 8.86% of LPG for upward propagation of flame. Whereas, for downward propagation of flame, the LFL and UFL are 1.87 and 7.69% of LPG, respectively. The nitrogen dilution effects on the flammability limits have been explored, which is presented on a flammability limit plot. It is believed that these data will be very useful for developing fire extinguishers and other combustion devices.  相似文献   

9.
Hydrogen production from biomass gasification in supercritical water is a new technology, which was developed in last two decades. Biomass energy of low quality can be converted to hydrogen energy of high quality by supercritical water gasification. Particularly, supercritical water gasification is an elegant way of wet biomass utilization. Up to now, many important progresses have been made in supercritical water gasification technology by the studies of researchers around the world. Since 1997, supercritical water gasification, which include reaction system, rule of biomass gasification and theory, have been studied in State Key Laboratory of Multiphase Flow in Power Engineering of Xi’an Jiaotong University. In this paper, we summarize the results from systematic experimental and analytical study on biomass gasification in supercritical water in our laboratory. Also, the development status and future prospect on supercritical water gasification is evaluated.  相似文献   

10.
A one-dimensional stationary model of biomass gasification in a fixed bed downdraft gasifier is presented in this paper. The model is based on the mass and energy conservation equations and includes the energy exchange between solid and gaseous phases, and the heat transfer by radiation from the solid particles. Different gasification sub-processes are incorporated: biomass drying, pyrolysis, oxidation of char and volatile matter, chemical reduction of H2, CO2 and H2O by char, and hydrocarbon reforming. The model was validated experimentally in a small-scale gasifier by comparing the experimental temperature fields, biomass burning rates and fuel/air equivalence ratios with predicted results. A good agreement between experimental and estimated results was achieved. The model can be used as a tool to study the influence of process parameters, such as biomass particle mean diameter, air flow velocity, gasifier geometry, composition and inlet temperature of the gasifying agent and biomass type, on the process propagation velocity (flame front velocity) and its efficiency. The maximum efficiency was obtained with the smaller particle size and lower air velocity. It was a consequence of the higher fuel/air ratio in the gasifier and so the production of a gas with a higher calorific value.  相似文献   

11.
Wenjiao Li  Kefa Cen  Junhu Zhou 《Fuel》2004,83(16):2103-2107
Induction-heating ignition burner for the pulverized coal fired boiler is introduced. Some experiments were conducted on an experimental set-up, which includes alternative current power system, induction-heating system, pulverized coal and air supplier system, and measurement system to study the ignition process of coal powder and air mixture stream. Some results are presented. An industrial induction-heating burner for a 220 t/h boiler, which was designed on the basis of a series of researches, is described. This kind of oil-free ignition burner is characterized by its stable operation performances, and the lower cost in its maintenance.  相似文献   

12.
13.
M.A. Ak  B. Sümer  C. Y?ld?r?m  F.E. Orhan 《Fuel》2011,90(1):395-398
This paper presents the hypergolic ignition test results of a potential environmentally friendly liquid propellant consisting of hydrogen peroxide oxidizer (with a concentration of 85%) and ethanolamine fuel for use in rocket engines. Open cup drop tests were conducted to study the effect of amount of metal salt catalyst in fuel and the initial temperatures of fuel and oxidizer on the ignition delay time. To test the hypergolic ignition of bipropellant formulation in a real rocket engine environment, a pressure-fed liquid propellant rocket engine (LPRE) was designed and developed. During the tests it was found that the amount of catalyst and the initial temperature of the fuel had a significant effect on the ignition delay of hypergolic bipropellant. However, the oxidizer temperature seemed to have almost no affect on the ignition delay. There was also significant difference between the ignition delay times from open cup tests and those from rocket engine static firings.  相似文献   

14.
The current work presents the results of an experimental study of the intermediates formed during ignition of methyl butanoate (C5H10O2) and air mixtures. A rapid-sampling system and the University of Michigan rapid compression facility were used to acquire gas samples at conditions of P = 10.2 atm and T = 985 K using mixtures of χmb = 0.96%, χO2 = 20.79%, χN2 = 52.89%, and χAr = 25.25% (mole fraction, percent basis); corresponding to ? = 0.30 and an inert gas to O2 molar ratio of 3.76. The samples were analyzed using gas chromatography. Quantitative measurements of mole fraction time-histories of methane, ethane, propane, ethene, propene, and 1-butene are compared with model predictions based on a reaction mechanism developed in previous work. The methane and ethene time-histories are in excellent agreement (within ∼20%), while propene and ethane are underpredicted by the model. Sensitivity analysis shows ignition is controlled primarily by competition between H2O2 and HO2 kinetics at these conditions. Reaction path analysis shows the methyl butanoate fuel consumption is dominated by H-atom abstraction by OH.  相似文献   

15.
Some biomass fuels produce more NOx than coal on the basis of heating value, giving rise to the necessity and importance of controlling NOx emission in biomass combustion. The present study investigated the NO reduction over biomass char in a fixed bed quartz reactor in the temperature range of 973–1173 K. The reaction rates of three biomass chars (sawdust, rice husk and corn straw) with NO were compared with Datong bituminous coal char. The results show that the reaction orders of biomass chars for NO are of fractional order and independent of temperature. Biomass chars are more active in reducing NO than coal char. The characteristics of biomass char affect NO conversion. Biomass char formed at high pyrolysis temperature, especially large in particle size, is less active in reducing NO. To some extent, increase of reaction temperature and char loading enhance NO conversion. There exists an optimum bed height for the highest NO conversion. Moreover, NO reduction over biomass char is also enhanced in the presence of CO, O2 and SO2.  相似文献   

16.
Fluidised bed steam gasification has proven to be a possible way of converting biomass and plastic undesirable wastes into fuel gases. The addition of plastics to pine wastes decreased CO content, but increased H2 released, up to values of 50% (v/v). The highest gas yield obtained was 1.96 Nl/g daf for 98% of energy conversion, when 60% (w/w) of plastic was in the feedstock. The steam/waste mixture ratio seems to have a small effect on gas composition. Temperature is the parameter that most influenced gases composition. The rise of temperature favoured the formation of H2 and decreased the formation of hydrocarbons, tars and char. At 885°C and in presence of 40% (w/w) of plastic, conversion to char was around 2%, whilst feedstock conversion to gas was around 90%. In this paper, the effect of experimental conditions on gasification process, with the aim of enhancing the gas production and improving its composition and energetic content was analysed.  相似文献   

17.
This paper has studied the influence of ambient pressure and oxygen content on spontaneous ignition of wood by conducting contrastive experiments with wood slab exposed to high temperature radiation at two different altitudes. The measurement of mass loss, time to ignition, and surface temperature of wood are carried out. Results show that mass loss rate of wood at high altitudes (3650 m) is higher than the one at low altitudes (50 m), while ignition delay time of the sample at high altitude is shorter. The surface temperatures at the time of ignition in the two different places are both close to each other, which indicates that the pressure did not affects the ignition temperature. The theoretical analysis on the phenomenon of different ignition behavior of wood in these two altitude environments has been presented.  相似文献   

18.
The pyrolysis of wood was carried out in an Entrained Flow Reactor at high temperature (650 to 950 °C) and under rapid heating conditions (> 103 K s− 1). The influence of the diameter and initial moisture of the particle, reactor temperature, residence time and the nature of the gaseous atmosphere on the composition of the gaseous products has been characterised. Particle size, between 80-125 and 160-200 μm, did not show any impact. Pyrolysis and tar cracking essentially happen in very short time period: less than 0.6 s; the products yields are only slightly modified after 0.6 s in the short residence times (several seconds) of our experiments. Higher temperatures improve hydrogen yield in the gaseous product while CO yield decreases. Under nitrogen atmosphere, after 2 s at 950 °C, 76% (daf) of the mass of wood is recovered as gases: CO, CO2, H2, CH4, C2H2, C2H4 and H2O. Tests performed under steam partial pressure showed that hydrogen production is slightly enhanced.  相似文献   

19.
Experiments were performed in an entrained-flow reactor to better understand the processes involved in biomass air gasification. Effects of the reaction temperatures (700 °C, 800 °C, 900 °C and 1000 °C), residence time and the equivalence ratio in the range of 0.22-0.34 on the gasification process were investigated. The behavior of biomass gasification was discussed in terms of composition of produced gas. Four parameters, i.e. the low heating value, fuel gas production, carbon conversion and cold gas efficiency were used to evaluate the gasification. The results show that CO, CO2 and H2 are the main gasification products, while hydrocarbons (CH4 and C2H4) are the minor ones. With the increase of the reaction temperature, the concentration of CO decreases, while the concentrations of CO2 and H2 increase. The concentrations of CH4 and C2H4 reach their maximum value when the reaction temperature is 800 °C. The optimal reaction temperature is considered to be 800 °C and the optimal equivalence ratio is 0.28 in that the low heating value of the produced gas, carbon conversion and cold gas efficiency achieve their maximum values. The kinetic parameters of sawdust air gasification are calculated basing on the Arrhenius correlation.  相似文献   

20.
A study of the unsteadiness problem of the ignition of static premixed gases that contain CH4 and steam by a catalytic hot sphere and a non-catalytic hot sphere were conducted, and a comparison between calculated and experimental results was done in the paper. The catalytic reforming reaction of CH4 with steam on the surface of the sphere produced a small amount of H2, CO and CO2, at the same time there occur oxidizing reactions of CH4, H2 and CO in the space. Both experimental and calculated results show that a small quantity of H2 produced by catalytic reforming reaction can greatly reduce the ignition temperature. In traditional catalytic combustion precious metals is applied to catalyse oxidizing reaction between oxygen and fuel to reduce ignition temperature. In this paper, a study on a ‘indirect’ catalytic combustion is conducted. The cheap catalytic material of Ni with rare earth is used and reforming reaction between steam and fuel is catalyzed, so hydrogen is generated on the surface of hot sphere and utilized to improve combustion. Calculation indicates that the high reactivity and high diffusivity of H2 remarkably affect ignition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号