首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
BACKGROUND: Counteraction between activators and repressors is crucial for the regulation of a number of cell-specific enhancers, where an activator and a repressor are mutually competitive in binding to the same site. DeltaEF1 is a repressor protein of delta1-crystallin minimal enhancer DC5 binding at the CACCT site, and inhibits activator deltaEF3 from binding to the overlapped site. It has two zinc finger clusters N-fin and C-fin, close to N- and C-termini, respectively, and a homeodomain in the middle. deltaEF1 also binds to the E2-box sequence CACCTG, and represses E2-box-dependent enhancers. RESULTS: The mechanism of the repressor action of deltaEF1 was investigated by examining various deletion mutants of deltaEF1 for their activity to repress delta1-crystallin enhancer fragment HN which contained DC5 sequence and an additional activator site. Both zinc finger clusters were found to be essential for DNA binding and repression, but the homeodomain was not. In addition, the NR domain close to the N-terminus was required for full repression. The NR domain showed active repression when fused to the Gal4 DNA binding domain. Active repression by deltaEF1, dependent on the NR domain, was also demonstrated in a situation where the binding sites of deltaEF1 and deltaEF3 were separated. N-fin and C-fin in their isolated forms bind the 5'-(T/C)ACCTG-3' and 5'-(t/C)ACCT-3' sequences, respectively, while the homeodomain showed no DNA binding activity. An analysis of DNA binding of the delta(Int)F form, having both N-fin and C-fin, indicated that a single DNA binding domain is assembled from two zinc finger clusters. CONCLUSION: Two mechanisms are involved in the repressor action of deltaEF1. First, a binding site competition with an activator which depends on the integrity of both zinc finger clusters, and second, an active repression to silence an enhancer which is attributed to the NR domain.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The zinc finger protein Rme1p is a negative regulator of the meiotic activator IME1 in Saccharomyces cerevisiae . Prior studies have shown that Rme1p binds in vitro to a site near nt -2030 in the IME1 upstream region, but a genomic mutation in that site has little effect on repression of IME1 . To identify Rme1p binding sites in vivo , we have examined the binding of Rme1p to genomic sites through in vivo footprinting. We show that Rme1p binds to two sites in the IME1 upstream region, near nt -1950 and -2030. Mutations in both binding sites abolish repression of chromosomal IME1 by Rme1p, whereas a mutation in either single site causes partial derepression. Therefore, both Rme1p binding sites are essential for repression of IME1 . Prior studies have shown that repression by Rme1p depends upon RGR1 and SIN4 , which specify RNA polymerase II mediator subunits that are required for normal nucleosome density. We find that RGR1 and SIN4 are not simply required for Rme1p to bind to DNA in vivo . These results suggest that Rme1p functions directly as a repressor of IME1 and that Rgr1p and Sin4p are required for DNA-bound Rme1p to exert repression.  相似文献   

16.
Carbamoyl-phosphate synthetase (CPSase) consists of a 120-kDa synthetase domain (CPS) that makes carbamoyl phosphate from ATP, bicarbonate, and ammonia usually produced by a separate glutaminase domain. CPS is composed of two subdomains, CPS.A and CPS.B. Although CPS.A and CPS.B have specialized functions in intact CPSase, the separately cloned subdomains can catalyze carbamoyl phosphate synthesis. This report describes the construction of a 58-kDa chimeric CPSase composed of Escherichia coli CPS.A catalytic subdomains and the mammalian regulatory subdomain. The catalytic parameters are similar to those of the E. coli enzyme, but the activity is regulated by the mammalian effectors and protein kinase A phosphorylation. The chimera has a single site that binds phosphoribosyl 5'-pyrophosphate (PRPP) with a dissociation constant of 25 microM. The dissociation constant for UTP of 0.23 mM was inferred from its effect on PRPP binding. Thus, the regulatory subdomain is an exchangeable ligand binding module that can control both CPS.A and CPS.B domains, and the pathway for allosteric signal transmission is identical in E. coli and mammalian CPSase. A deletion mutant that truncates the polypeptide within a postulated regulatory sequence is as active as the parent chimera but is insensitive to effectors. PRPP and UTP bind to the mutant, suggesting that the carboxyl half of the subdomain is essential for transmitting the allosteric signal but not for ligand binding.  相似文献   

17.
Mu transposase is a member of a protein family that includes many transposases and the retroviral integrases. These recombinases catalyze the DNA cleavage and joining reactions essential for transpositional recombination. Here we demonstrate that, consistent with structural predictions, aspartate 336 of Mu transposase is required for catalysis of both DNA cleavage and DNA joining. This residue, although located 55 rather than 35 residues NH2-terminal of the essential glutamate, is undoubtedly the analog of the second aspartate of the Asp-Asp-35-Glu motif found in other family members. The core domain of Mu transposase consists of two subdomains: the NH2-terminal subdomain (IIA) contains the conserved Asp-Asp-Glu motif residues, whereas the smaller COOH-terminal subdomain (IIB) contains a large positively charged region exposed on its surface. To probe the function of domain IIB, we constructed mutant proteins carrying deletion or substitution mutations within this region. The activity of the deletion proteins revealed that domains IIA and IIB can be provided by different subunits in the transposase tetramer. Substitution mutations at two pairs of exposed lysine residues within the positively charged surface of domain IIB render transposase defective in transposition at a reaction step after DNA cleavage but prior to DNA joining. The severity of this defect depends on the structure of the DNA flanking the cleavage site. Thus, these data suggest that domain IIB is involved in manipulating the DNA near the cleavage site and that this function is important during the transition between the DNA cleavage and the DNA joining steps of recombination.  相似文献   

18.
19.
The recognition of DNA targets by Pax-3 is achieved through the coordinate use of two distinct helix-turn-helix-based DNA-binding modules: a paired domain, composed of two structurally independent subdomains joined by a short linker, and a paired-type homeodomain. In mouse, the activity of the Pax-3 paired domain is modulated by an alternative splicing event in the paired domain linker region that generates isoforms (Q+ and Q-) with distinct C-terminal subdomain-mediated DNA-binding properties. In this study, we have used derivatives of a classical high affinity paired domain binding site (CD19-2/A) to derive an improved consensus recognition sequence for the Pax-3 C-terminal subdomain. This new consensus differs at six out of eight positions from the C-terminal subdomain recognition motif present in the parent CD19-2/A sequence, and includes a 5'-TT-3' dinucleotide at base pairs 15 and 16 that promotes high affinity binding by both Pax-3 isoforms. However, with a less favorable guanine at position 15, only the Q- isoform retains high affinity binding to this sequence, suggesting that this alternative splicing event might serve to stabilize binding to suboptimal recognition sequences. Finally, mutagenic analysis of the linker demonstrates that both the sequence and the spacing in this region contribute to the enhanced DNA-binding properties of the Pax-3/Q- isoform. Altogether, our studies establish a clear role for the Pax-3 C-terminal subdomain in DNA recognition and, thus, provide insights into an important mechanism by which Pax proteins achieve distinct target specificities.  相似文献   

20.
Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We have previously demonstrated that the N-terminal J domain of TAg affects the RB-related proteins by perturbing the phosphorylation status of p107 and p130 and promoting the degradation of p130 and that this domain is required for transformation of cells that express either p107 or p130. In this work, we demonstrate that the J domain of TAg is required to inactivate the ability of each member of the pRB family to induce a G1 arrest in Saos-2 cells. Furthermore, the J domain is required to override the repression of E2F activity mediated by p130 and pRB and to disrupt p130-E2F DNA binding complexes. These results imply that while the LXCXE domain serves as a binding site for the RB-related proteins, the J domain plays an important role in inactivating their function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号