共查询到20条相似文献,搜索用时 10 毫秒
1.
A model for computing the trajectories of the conducting particles from waste printed circuit boards in corona electrostatic separators 总被引:2,自引:0,他引:2
A model for computing the trajectory of conducting particle from waste printed circuit board (PCB) scraps in corona electrostatic separator is established. Using analytical expression for computing non-uniformity of the electric field in the active zone of the separator and the differential method were used for computing the trajectories of conducting particles in the air, after detachment. The result shows that the trajectory of conducting particle can be computed under various initial parameters (R, r, L, alpha, U, n; rho, r0) by the computing model and the computing results have a good agreement with the actual separating process. This model offers a possible for designing the new corona electrostatic separator. 相似文献
2.
Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy 总被引:5,自引:0,他引:5
Veit HM Bernardes AM Ferreira JZ Tenório JA de Fraga Malfatti C 《Journal of hazardous materials》2006,137(3):1704-1709
The constant growth in generation of solid wastes stimulates studies of recycling processes. The electronic scrap is part of this universe of obsolete and/or defective materials that need to be disposed of more appropriately, or then recycled. In this work, printed circuit boards, that are part of electronic scrap and are found in almost all electro-electronic equipments, were studied. Printed circuit boards were collected in obsolete or defective personal computers that are the largest source of this kind of waste. Printed circuit boards are composed of different materials such as polymers, ceramics and metals, which makes the process more difficult. However, the presence of metals, such as copper and precious metals encourage recycling studies. Also the presence of heavy metals, as Pb and Cd turns this scrap into dangerous residues. This demonstrates the need to search for solutions of this kind of residue, in order to have it disposed in a proper way, without harming the environment. At the first stage of this work, mechanical processing was used, as comminution followed by size, magnetic and electrostatic separation. By this process it was possible to obtain a concentrated fraction in metals (mainly Cu, Pb and Sn) and another fraction containing polymers and ceramics. The copper content reached more than 50% in mass in most of the conductive fractions and significant content of Pb and Sn. At the second stage, the fraction concentrated in metals was dissolved with acids and treated in an electrochemical process in order to recover the metals separately, especially copper. The results demonstrate the technical viability of recovering copper using mechanical processing followed by an electrometallurgical technique. The copper content in solution decayed quickly in all the experiments and the copper obtained by electrowinning is above 98% in most of the tests. 相似文献
3.
4.
Lingtao Zhu Mingming Zhang Jingfeng He Chengguo Liu Yake Yao Jiang Xu Bin Liu Sipeng Yin Xuan Xu 《Advanced Powder Technology》2021,32(2):370-377
The vibrated gas-solid fluidized bed based on fluidized separation technology was used to recycle the metallic fraction of waste printed circuit boards (WPCBs). The size fraction composition and element distribution of the crushed products were analyzed by sieving and X-ray fluorescence, respectively. The contents of Cu, Zn, Fe and Ti in various size fractions had significant differences, resulting in preliminary enrichment. The performance of vibration on the fluidization characteristics of WPCBs powder was described. With fluidization number, vibration frequency and vibration amplitude as variables, the separation performance of WPCBs powder under various operational conditions was studied. With the optimum operated conditions, the optimal recovery rates of metallic fraction of the three size fractions of 1–0.5 mm, 0.5–0.25 mm and 0.25–0.125 mm were 88.53%, 95.61% and 82.28%, respectively. The vibrated gas-solid fluidized bed can effectively enrich and recover the metallic fraction of WPCBs, providing convenience for subsequent separation. 相似文献
5.
Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound 总被引:4,自引:1,他引:3
The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m(2), heat deflection temperature of 175 degrees C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits. 相似文献
6.
7.
A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards 总被引:3,自引:0,他引:3
Yanhong Zheng Zhigang Shen Shulin Ma Chujiang Cai Xiaohu Zhao Yushan Xing 《Journal of hazardous materials》2009,170(2-3):978-982
The printed circuit boards (PCBs) contain nearly 70% nonmetal materials, which usually are abandoned as an industrial solid-waste byproduct during the recycling of waste PCBs. However those materials have abundant high-value glass fibers. In this study, a novel fluidized bed process technology for recycling glass fibers from nonmetal materials of waste PCBs is studied. The recycled glass fibers (RGF) are analyzed by determination of their purity, morphology and surface chemical composition. This process technology is shown to be effective and robust in treating with nonmetal materials of waste PCBs. The thermoset resins in the nonmetal materials are decomposed in the temperature range from 400 °C to 600 °C. And the glass fibers are collected at high purity and recovery rate by the cyclone separators without violating the environmental regulation. This novel fluidized bed technology for recycling high-value glass fibers from nonmetal materials of waste PCBs represents a promising way for recycling resources and resolving the environmental pollutions during recycling of waste PCBs. 相似文献
8.
9.
Recovery of metals from waste printed circuit boards by a mechanical method using a water medium 总被引:2,自引:0,他引:2
Chenlong Duan Xuefeng Wen Changsheng Shi Yuemin Zhao Baofeng Wen Yaqun He 《Journal of hazardous materials》2009
Research on the recycling of waste printed circuit boards (PCB) is at the forefront of environmental pollution prevention and resource recycling. To effectively crush waste PCB and to solve the problem of secondary pollution from fugitive odors and dust created during the crushing process, a wet impacting crusher was employed to achieve comminution liberation of the PCB in a water medium. The function of water in the crushing process was analyzed. When using slippery hammerheads, a rotation speed of 1470 rpm, a water flow of 6 m3/h and a sieve plate aperture of 2.2 mm, 95.87% of the crushed product was sized less than 1 mm. 94.30% of the metal was in this grade of product. Using smashed material graded −1 mm for further research, a Falcon concentrator was used to recover the metal from the waste PCB. Engineering considerations were the liberation degree, the distribution ratio of the metal and a way to simplify the technology. The separation mechanism for fine particles of different densities in a Falcon concentrator was analyzed in detail and the separation process in the segregation and separation zones was deduced. Also, the magnitude of centrifugal acceleration, the back flow water pressure and the feed slurry concentration, any of which might affect separation results, were studied. A recovery model was established using Design-Expert software. Separating waste PCB, crushed to −1 mm, with the Falcon separator gave a concentrated product graded 92.36% metal with a recovery of 97.05%. To do this the reverse water pressure was 0.05 MPa, the speed transducer frequency was set at 30 Hz and the feed density was 20 g/l. A flow diagram illustrating the new technique of wet impact crushing followed by separation with a Falcon concentrator is provided. The technique will prevent environmental pollution from waste PCB and allow the effective recovery of resources. Water was used as the medium throughout the whole process. 相似文献
10.
Waste printed circuit boards (WPCB) have an inherent value because of the precious metal content. For an effective recycling of WPCB, it is essential to recover the precious metals. This paper reports a promising method to recover the precious metals. Aqua regia was used as a leachant and the ratio between metals and leachant was fixed at 1/20 (g/ml). Silver is relatively stable so the amount of about 98 wt.% of the input was recovered without an additional treatment. Palladium formed a red precipitate during dissolution, which were consisted of Pd(NH(4))(2)Cl(6). The amount precipitated was 93 wt.% of the input palladium. A liquid-liquid extraction with toluene was used to extract gold selectively. Also, dodecanethiol and sodium borohydride solution were added to make gold nanoparticles. Gold of about 97 wt.% of the input was recovered as nanoparticles which was identified with a high-resolution transmission electron microscopy through selected area electron diffraction and nearest-neighbor lattice spacing. 相似文献
11.
The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites 总被引:1,自引:0,他引:1
The feasibility of reusing nonmetals recycled from waste printed circuit boards (PCBs) as reinforcing fillers in the polypropylene (PP) composites is studied by using both mechanical and vicat softening temperature (VST) tests. The concentration of Cu leaded from the composites is also tested. The mechanical test shows that both tensile and flexural properties of the nonmetals/PP composites can be significantly improved by adding the nonmetals into PP. The maximum increment of tensile strength, tensile modulus, flexural strength and flexural modulus of the PP composites is 28.4%, 62.9%, 87.8% and 133.0%, respectively. As much as 30 wt% nonmetals recycled from waste PCBs can be added in the PP composites without violating the environmental regulation. The VST test shows that the presence of nonmetals can improve the heat resistance of the nonmetals/PP composites for their potential applications. The optimum particle is the fine or medium nonmetals recycled from waste PCBs, and the optimum content of the nonmetals is 30 wt% basing on the comprehensive consideration. All the above results indicate that the reuse of nonmetals as reinforcing fillers in the PP composites represents a promising way for recycling resources and resolving the environmental pollutions. 相似文献
12.
S. C. FANG 《国际生产研究杂志》2013,51(6):1031-1037
Consider a printed circuit board with N signal paths in which k (not known a priori) paths are subjected to electrical shorts. A straight forward technique to detect all shorts is to test each pair of signal paths separately. This method needs (N2 — N)/2 tests. In order to reduce the testing effort, manufacturers introduced a device that could test a group of signal paths against another group of signal paths. With the help of this device, a method with N + ((k2 —k)/) tests needed was patented in 1982. In this paper, we present a new method that requires only O(k[log2 N]) tests to achieve the same resolution using the same device. 相似文献
13.
Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria 总被引:3,自引:0,他引:3
Metal concentrates of printed circuit boards (PCBs) are the residue valuable metals from which non-metallic components are removed. The non-metallic components show bacterial toxicity in bioleaching process and can be recycled as well. In this study, the effects of initial pH, initial Fe(II) concentration, metal concentrate dosage, particle size, and inoculation quantity on the bioleaching were investigated so as to determine the optimum conditions and evaluate the feasibility of bioleaching of metal concentrates of PCBs by mixed culture of acidophilic bacteria (MCAB). The results showed that the initial pH and Fe(II) concentration played an important role in copper extraction and precipitate formation. Under the optimized conditions of initial pH 2.00, 12 g/L initial Fe(II), 12 g/L metal concentrate dosage, 10% inoculation quantity, and 60-80 mesh particle size, 96.8% the copper leaching efficiency was achieved in 45 h, and aluminum and zinc 88.2% and 91.6% in 98 h, respectively. All findings demonstrated that metals could be efficiently leached from metal concentrates of waste PCBs by using the MCAB, and the leaching period was shorten from about 8 days to 45 h. 相似文献
14.
Santhosh Krishnamoorthy Gnanasekaran Ramakrishnan Balaji Dhandapani 《IET nanobiotechnology / IET》2021,15(2):212
Organic acids such as citric acid, itaconic acid and oxalic acid synthesised by Aspergillus niveus were used for the bioleaching of metals from waste printed circuit boards. Bioleaching of valuable metals was performed in one‐step, two‐steps and spent medium approaches using A. niveus. In the absence of waste printed circuit boards (WPCBs), the dry cell weight of A. niveus was higher when compared with the presence of WPCBs. Variations in the dry cell weight were observed for the presence of different particle sizes. The increase in itaconic acid and oxalic acid synthesis was found at a reduced particle size (60–80 mesh) and reached the maximum titre of itaconic acid (22.35 ± 0.87 mM) and oxalic acid (12.75 ± 0.54 mM) in 12 days during the two‐step bioleaching. The maximum recovery of 75.66% Zn, 73.58% Ni and 80.25% Cu from WPCBs was achieved in 15 days in two‐step leaching with particle sizes of the mesh being 60–80. 相似文献
15.
Recycling of waste printed circuit boards: a review of current technologies and treatment status in China 总被引:16,自引:0,他引:16
From the use of renewable resources and environmental protection viewpoints, recycling of waste printed circuit boards (PCBs) receives wide concerns as the amounts of scrap PCBs increases dramatically. However, treatment for waste PCBs is a challenge due to the fact that PCBs are diverse and complex in terms of materials and components makeup as well as the original equipment's manufacturing processes. Recycle technology for waste PCBs in China is still immature. Previous studies focused on metals recovery, but resource utilization for nonmetals and further separation of the mixed metals are relatively fewer. Therefore, it is urgent to develop a proper recycle technology for waste PCBs. In this paper, current status of waste PCBs treatment in China was introduced, and several recycle technologies were analyzed. Some advices against the existing problems during recycling process were presented. Based on circular economy concept in China and complete recycling and resource utilization for all materials, a new environmental-friendly integrated recycling process with no pollution and high efficiency for waste PCBs was provided and discussed in detail. 相似文献
16.
The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications. 相似文献
17.
Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator 总被引:2,自引:0,他引:2
Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES. 相似文献
18.
The aim of this study was to present a new method for resource utilization of nonmetallic materials reclaimed from pulverized waste printed circuit boards. A reproduction nonmetallic plate (RNMP) was prepared by adding resin paste, glass fiber and additives into nonmetallic materials using self-made hot-press former. Principle of manufacturing process and effects of mould temperature and moulding time on the mechanical properties of RNMP were studied. The results showed that when moulding pressure was fixed at 6 MPa, the optimum conditions for the RNMP were as follows: 140/135 degrees C for top/bottom mould temperature, 5 min for moulding time. The maximum content of nonmetallic materials in RNMP was up to 40 wt%. When nonmetallic material content was 20 wt%, the RNMP moulded at optimum conditions had excellent mechanical properties, with impact strength of 5.8 kJ/m(2) and flexural strength of 65.1 MPa. 相似文献
19.
M. Moshrefi-Torbati J. Swingler 《Journal of Materials Science: Materials in Electronics》2011,22(4):400-411
Lead-free solders were never an industry choice until government legislation, their wide spread use is still in its infancy due to long term reliability issues. A specific SAC (Tin-Silver-Copper) family of solder alloys has emerged as the favourite to offer technical advantages as well as meeting those legislative requirements. This paper investigates accelerated life behaviour of lead-free solder joints and printed circuit boards using thermal and electrical stress cycling. The aim is to understand the degradation of these materials in a practical operating environment. Whilst corrosion and debris deposits have been found, no significant evidence has been obtained for tin whiskering. EDX analysis has shown the presence of high concentrations of elements considered to arise from the packaging material. Thermal cycling tests have presented an aggressive environment to the samples and the effect on them has been supported by microscopic and macroscopic observations of debris and corrosion. The electrical behaviour, i.e., the joint resistance, has not however, significantly degraded. 相似文献
20.
Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards 总被引:2,自引:0,他引:2
Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method. 相似文献