首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The hypocholesterolemic efficacies of various polyunsaturated fatty acids were compared in rats given cholesterol-enriched diets.Oenothera biennis Linn oil (OBLO, linoleic +γ-linolenic), sunflower oil (linoleic), palm oil (PLO, oleic+linoleic), soybean oil (linoleic+α-linolenic), high-oleic safflower oil (oleic+linoleic), or mixed oil (linoleic+α-linolenic) was added to the diet at 200 g/kg (20% groups). OBLO was also added at 100 g/kg diet (10% group). The serum total and very low density lipoprotein+intermediate lipoprotein+low density lipoprotein cholesterol concentrations of the 10 and 20% OBLO groups were consistently lower than those in the other groups. The liver cholesterol concentration in the PLO group was lower in all groups. The liver cholesterol concentrations in the 10 and 20% OBLO groups were also lower than in the other groups. There were no significant differences in the fecal neutral sterol and bile acid extraction among groups.  相似文献   

2.
Hypocholesterolemic effects in older animals after long-term feeding are unknown. Therefore, aged rats (24 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil [PEO; oleic acid+linoleic acid+α-linolenic acid; n−6/n−3, 0.3; polyunsaturated fatty acid/saturated fatty acid (P/S), 9.6], borage oil [oleic acid+linoleic acid+α-linolenic acid; n−6/n−3, 15.1; P/S, 5.3], evening primrose oil (FPO; linoleic acid+γ-linolenic acid; P/S, 10.5), mixed oil (MIO; oleic acid+linoleic acid+γ-linolenic acid+α-linolenic acid; n−6/n−3, 1.7; P/S, 6.7), or palm oil (PLO; palmitic acid+oleic acid+linoleic acid; n−6/n−3, 25.3; P/S, 0.2) with 0.5% cholesterol for 15 wk in this experiment. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO (n−6/n−3, 0.3) group was significantly higher than those of other groups in aged rats. The serum total cholesterol and very low density lipoprotein (VLDL) +intermediate density lipoprotein (IDL)+low density lipoprotein (LDL)-cholesterol concentrations of the PLO (25.3) group were consistently higher than those in the other groups. The serum high density lipoprotein cholesterol concentrations of the PEO (0.3) and EPO groups were significantly lower than in the other groups at the end of the 15-wk feeding period. The liver cholesterol concentration of the PLO (25.3) group was significantly higher than those of other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apolipoprotein (apo) B mRNA levels were not affected by the experimental conditions. The fecal neutral steroid excretion of the PLO (25.3) group tended to be low compared to the other groups. The results of this study demonstrate that both n\t-6 fatty acid and n\t-3 fatty acids such as \gg-linolenic acid and \ga-linolenic acid inhibit the increase of serum total cholesterol and VLDL+IDL+LDL-cholesterol concentrations of aged rats in the presence of excess cholesterol in the diet compared with dietary saturated fatty acid.  相似文献   

3.
The hypocholesterolemic efficacy of various polyunsaturated fatty acids was compared in rats given cholesterol-enriched diets. Capybara oil (CO, linoleic+α-linolenic acids), horse oil (HO, α-linolenic acid), and sardine oil (SO, eicosapentaenoic+docosahexaenoic acids) were added to diets at 50 g/kg. The weight gain, food intake, and liver weight in the CO-fed group were significantly higher than those in other groups during the 6-wk experimental period. The serum total and very low density lipoprotein (VLDL)+intermediate density lipoprotein (IDL)+low density lipoprotein (LDL) cholesterol concentrations of the CO-fed and SO-fed groups were significantly lower than in the HO-fed group after 6 wk. The serum high density lipoprotein cholesterol concentration in the SO-fed group was significantly higher than that in the CO-fed and HO-fed groups. The fecal neutral sterol concentration in the CO-fed group was reduced significantly compared with the other groups, and the fecal bile acid concentration in the HO-fed group was significantly higher than that in the SO-fed group. The results of this study demonstrate that CO lowers the serum total cholesterol and VLDL+IDL+LDL-cholesterol concentrations in the presence of excess cholesterol in the diet as well as SO.  相似文献   

4.
Three groups of rats were fed diets with either 10 weight percent (wt%) of evening primrose oil, safflower oil or soybean oil for 11 weeks. Diets contained 7.1 wt% linoleic acid +0.8 wt% γ-linolenic acid, 7.6 wt% linoleic acid, or 5.3 wt% linoleic acid +0.7 wt% α-linolenic acid, respectively. In liver mitochondria as well as in heart, dietary γ-linolenic acid did not affect the fatty acid profiles of phosphatidylcholnes (PC), phosphatidylethanolamines (PE) or cardiolipins (CL), whereas dietary α-linolenic acid caused an increased formation of (n−3) polyunsaturated fatty acids (PUFA). The liver Δ6− and Δ5-desaturase activities determined in vitro were not affected by the dietary fats. In brain PE, which are rich in C22− and C20-(n−3) PUFA, as well as in testes PC and PE, which are rich in (n−6) PUFA, no effects were found from a partial replacement of dietary linoleic acid with γ-linolenic acid or α-linolenic acid. In kidney PC, PE, phosphatidylinositol (PI) and CL, 20∶3(n−6) was moderately elevated to ca. 1% following intake of γ-linolenic acid, whereas partial replacement of linoleic acid with α-linolenic acid was followed by increased deposition of 22∶6(n−3) in PC and PE of testes and kidney. Thus, no general effect of evening primrose oil on the content of (n−6) PUFA in rat tissue phospholipids was observed, wheras a significant incorporation of γ-linolenic acid into liver and adipose tissue triglycerides was found.  相似文献   

5.
The effects of oil-derived dietary essential fatty acids on the activities of mitchondrial Mn-SOD (manganese-superoxide dismutase) and cytosolic cupric zinc-superoxide dismutase (Cu/Zn-SOD) were investigated in rat heart. A control group of rats was fed a stock diet for 29 d, and a second group was fed on a fat-free diet. Three other groups were fed fat-free diets that were supplemented with (i) borage oil, which is rich in linoleic (18∶2n−6) and γ-linolenic (18∶3n−6) acids, (ii) fungal oil, which is rich in γ-linolenic, but low in linoleic acid, or (iii) evening primrose oil, which is rich in linoleic acid and low in γ-linolenic acid. An increase in the percentage composition of arachidonic acid (20∶4n−6) in both the choline and ethanolamine phospholipids, together with a decrease in linoleic acid in ethanolamine phospholipids, were found in heart membranes after feeding the rats with diets containing borage oil or fungal oil as compared to those fed the stock diet. The respective activities of Mn-SOD in rats fed the borage or fungal oil diets were also significantly higher than in rats fed the stock diet alone. No change in cytosolic Cn/Zn-SOD activity was observed. Dietary supply of linoleic acid-rich evening primrose oil resulted in an increased proportion of choline phospholipid linoleic acid without any changes in arachidonic acid content or in the activity of Mn-SOD. By contrast, a reduction in the activity of Mn-SOD was detected in rats fed a fat-free diet. These results show that the activity of heart mitochondrial Mn-SOD is influenced by dietary essential fatty acids, whereas the activity of cytosolic Cu/Zn-SOD remained unaffected.  相似文献   

6.
Mycelia of arachidonic acid-producing fungi belonging to the genusMortierella were found to convert an oil containing α-linolenic acid to an oil containing 5,8,11,14,17-cis-eicosapentaenoic acid (EPA). This conversion was observed when they were grown in a medium containing the oil, glucose and yeast extract at 28 C. On the screening of various oils, linseed oil, in which α-linolenic acid amounts to about 60% of the total fatty acids, was found to be the most suitable for EPA production. Under the optimal culture conditions, a selected strain,Mortierella alpina 20-17, converted 5.1% of the α-linolenic acid in the added oil into EPA, the EPA production reaching 1.35 g/l of culture broth (41.5 mg/g dry mycelia). This value corresponded to 7.1% (by weight) of the total fatty acids in the extracted lipids. The lipid was also found to be rich in arachidonic acid (12.3%). Other major fatty acids in the lipid were palmitic acid (4.4%), stearic acid (3.2%), oleic acid (13.5%), linoleic acid (13.7%), α-linolenic acid (38.5%) and γ-linolenic acid (0.9%).  相似文献   

7.
The mycelial dihomo-γ-linolenic acid content of an arachidonic acid-producing fungus,Mortierella alpina 1S-4, was found to increase, with an accompanying marked decrease in its arachidonic acid content, on cultivation with sesame oil. The resultant mycelia were found to be a rich source of dihomo-γ-linolenic acid. This unique phenomenon was suggested to be due to specific repression of the conversion of dihomo-γ-linolenic acid to arachidonic acid by the oil. After fractionation of the oil with acetone into oil and non-oil fractions, it was found that the effective factor(s) was present in the non-oil fraction. In a study on optimization of the culture conditions for the production of dihomo-γ-linolenic acid byM. alpina 1S-4, a medium containing glucose, yeast extract and the non-oil fraction was found to be suitable for the production. Under the optimal conditions in a 50-1 fermentor, the fungus produced 107 mg of dihomo-γ-linolenic acid/g dry mycelia (2.17 g/l of culture broth). This value accounted for 23.1% of the total fatty acids in the lipids extracted from the mycelia. The mycelia were also rich in arachidonic acid (53.5 mg/g dry mycelia, 11.2%). Other major fatty acids in the lipids were palmitic acid (24.1%), stearic acid (7.0), oleic acid (20.1), linoleic acid (6.6) and γ-linolenic acid (4.1). On leave from Suntory Ltd.  相似文献   

8.
The triacylglycerol stereospecific structure was determined for the major plant oils containing ψ-linolenic acid (GLA): evening primrose oil (EPO), black currant oil (BCO), borage oil (BO), andMucor javanicus fungal oil (MJO). It was found that GLA, although not α-linolenic acid, resisted pancreatic lipase hydrolysis. Therefore, the 2-position analysis was determined using phospholipase C-generated 1,2-diacylglycerol and phospholipase A2-generated lysophosphatidylcholine. GLA was found to be concentrated in the 3-position of EPO and BCO, the 2-position of BO, and the 2- and 3-positions of MJO. In BCO, octadecatetraenoic acid (n−3), also a †-6 fatty acid, was distributed similarly to GLA, but α-linolenic acid was found predominantly in the 1-position. Linoleic acid was nearly evenly distributed in all positions of EPO and BCO but was concentrated in the 1-position of BO and the 2-position of MJO. Both palmitic and stearic acids were found predominantly in the 1-position of all of the oils. The results demonstrate similarities and differences in the positional distribution of fatty acids in GLA-containing oils.  相似文献   

9.
Conjugated fatty acids are regularly found in nature and have a history of biogenic activity in animals and humans. A number of these conjugated fatty acids are microbially produced and have been associated with potent anti-carcinogenic, anti-adipogenic, anti-atherosclerotic and anti-diabetogenic activities. Therefore, the identification of novel conjugated fatty acids is highly desirable. In this study, strains of bifidobacteria and propionibacteria previously shown by us and others to display linoleic acid isomerase activity were assessed for their ability to conjugate a range of other unsaturated fatty acids during fermentation. Only four, linoleic, α-linolenic, γ-linolenic and stearidonic acids, were converted to their respective conjugated isomers, conjugated linoleic acid (CLA), conjugated α-linolenic acid (CLNA), conjugated γ-linolenic acid (CGLA) and conjugated stearidonic acid (CSA), each of which contained a conjugated double bond at the 9,11 position. Of the strains assayed, Bifidobacterium breve DPC6330 proved the most effective conjugated fatty acid producer, bio-converting 70% of the linoleic acid to CLA, 90% of the α-linolenic acid to CLNA, 17% of the γ-linolenic acid to CGLA, and 28% of the stearidonic acid to CSA at a substrate concentration of 0.3 mg mL−1. In conclusion, strains of bifidobacteria and propionibacteria can bio-convert linoleic, α-linolenic, γ-linolenic and stearidonic acids to their conjugated isomers via the activity of the enzyme linoleic acid isomerase. These conjugated fatty acids may offer the combined health promoting properties of conjugated fatty acids such as CLA and CLNA, along with those of the unsaturated fatty acids from which they are formed.  相似文献   

10.
The fatty acid composition of 16 brands of evening primrose oil (EPO) capsules was determined by capillary gas chromatography. Fourteen of these EPO brands contained γ-linolenic acid (GLA) levels between 7% and 10% (mean, 8.7; range, 1.9–10.5%) and there was generally good agreement between the level of GLA claimed by the manufacturer and the level determined by analysis. Low levels of the monoenes 22∶1 and 24∶1 found in some brands may indicate contamination of EPO with borage oil.  相似文献   

11.
γ-Linolenic acid (Z,Z,Z-6,9,12-octadecatrienoic acid), a very important polyunsaturated fatty acid is found in the free fatty acid fraction prepared by the hydrolysis of borage oil. Our aim was to enrich this fraction in γ-linolenic acid using selective esterification. Candida rugosa lipase was used as catalyst after immobilization on the following ion-exchange resins: Amberlite IRC50, IRA35, IRA93, and Duolite A7, A368, A568. In every case, immobilization modified the lipae’s specificity: palmitic, stearic, oleic, and linoleic acids were preferentially esterified compared to γ-linolenic acid, thus allowing a γ-linolenic acid enrichment of 3.0.  相似文献   

12.
The interrelations between linoleic acid (LA) metabolites and fish oil fatty acids were studied. Sprague-Dawley rats (200–220 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) of different combinations of evening primrose oil (EPO), a rich source of LA and γ-linolenic acid, and polepa (POL), a marine oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. The combinations of supplement were as follows: 9% EPO-1% POL, 8% EPO-2% POL, 7% EPO-3% POL, 6% EPO-4% POL and 5% EPO-5% POL. After two weeks on the respective diets, the animals were killed, and the fatty acid compositions of liver and plasma phospholipids were examined. The results showed that animals fed higher proportions of POL consistently contained higher levels of dihomo-γ-linolenic acid (DGLA) (p<0.05), a metabolite of LA and GLA, and lower levels of arachidonic acid (AA) (p<0.01), a metabolite of DGLA through Δ-5-desaturation. Thus, an inverse relationship between AA/DGLA ratio and EPA levels was found to exist (r=−0.765 in plasma and −0.792 in liver). However, there was no such relationship between AA/DGLA ratio and DHA levels. This result suggested that EPA but not DHA in fish oil exerts an inhibitory effect on the conversion of DGLA to AA.  相似文献   

13.
Meyer BJ  Hammervold T  Rustan AC  Howe PR 《Lipids》2007,42(2):109-115
The objective of the study was to evaluate potential benefits of docosahexaenoic acid (DHA) rich fish oil supplementation as an adjunct to statin therapy for hyperlipidaemia. A total of 45 hyperlipidaemic patients on stable statin therapy with persistent elevation of plasma triglycerides (averaging 2.2 mmol/L) were randomised to take 4 g/day (n = 15) or 8 g/day (n = 15) of tuna oil or olive oil (placebo, n = 15) for 6 months. Plasma lipids, blood pressure and arterial compliance were assessed initially and after 3 and 6 months in 40 subjects who completed the trial. Plasma triglycerides were reduced 27% by 8 g/day DHA-rich fish oil (P < 0.05) but not by 4 g/day when compared with the placebo and this reduction was achieved by 3 months and was sustained at 6 months. Even though total cholesterol was already well controlled by the statin treatment (mean initial level 4.5 mmol/L), there was a further dose-dependent reduction with fish oil supplementation (r = −0.344, P < 0.05). The extent of total cholesterol reduction correlated (r = −0.44) with the initial total cholesterol levels (P < 0.005). In the subset with initial plasma cholesterol above 3.8 mmol/L, plasma very low density lipoprotein (VLDL), intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL) were isolated and assayed for cholesterol and apolipoprotein B (apoB) at the commencement of the trial and at 3 months of intervention. Fish oil tended to lower cholesterol and apoB in VLDL and raise both in LDL. There were no changes in IDL cholesterol, IDL apoB and high-density lipoprotein cholesterol. The results demonstrate that DHA-rich fish oil supplementation (2.16 g DHA/day) can improve plasma lipids in a dose-dependent manner in patients taking statins and these changes were achieved by 3 months. Fish oil in addition to statin therapy may be preferable to drug combinations for the treatment of combined hyperlipidaemia.  相似文献   

14.
The effect of a protein diet on the biosynthesis of polyunsaturated fatty acids of the linoleic acid family was studied by incubation of rat liver microsomes with labeled linoleic acid. The incubation was performed in desaturating, elongating and desaturating-elongating conditions. In desaturating conditions, linoleic acid was converted to γ-linolenic acid, whereas in elongating conditions it was converted to 20∶2, 22∶2 and 24∶2. In desaturating-elongating conditions, labeling was found in γ 18∶3, 20∶2, 20∶3, 20∶4 and 22∶2. A protein diet increased the oxidative desaturation of linoleic acid to γ-linolenic and arachidonic acid biosynthesis, whereas the elongating reaction was not enhanced in the experimental conditions tested. It is suggested that the main controllable step in the linoleic acid family is the oxidative desaturation of linoleic acid to γ-linolenic acid.  相似文献   

15.
The effect of glucagon, dibutyryl cyclic adenosine 3′,5′-monophosphate, and epinephrine on the biosynthesis of polyunsaturated fatty acids of the linoleic acid family was studied. The incubations were performed with rat liver microsomes and labeled linoleic acid under desaturating and elongating conditions. Under desaturating conditions, linoleic acid was converted to γ-linolenic acid, whereas under elongating conditions it was converted to 20∶2ω6. Glucagon, dibutyryl cyclic AMP, and epinephrine decreased the oxidative desaturation of linoleic acid to γ-linolenic acid while the elongating reaction was not modified in the experimental conditions tested. Consequently, the results support the hypothesis that the oxidative desaturation of linoleic acid to γ-linolenic acid is the main controllable step in the biosynthesis of polyunsaturated fatty acids of the linoleic acid family in the microsomes.  相似文献   

16.
Leaves from soybean (Glycine max (L.) Merr.) plants were assayed to determine if the relationship between temperature and relative fatty acid composition observed in the seed oil also existed for the triglycerides in the leaf oil. Leaf samples were harvested from eight soybean lines (A5, A6, C1640, Century, Maple Arrow, N78-2245, PI 123440 and PI 361088B) grown at 40/30,28/22 and 15/ 12°C day/night. At 40/30 and 28/22°C, seven fatty acids were observed at a level greater than 1.0%. These included the five major fatty acids found in the seed oil: palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acid; plus two fatty acids that had retention times the same as palmitoleic (16:1) and γ-linolenic (18:3 g) acid. In addition, an eighth fatty acid that had a retention time the same as behenic (22:0) acid was found in the leaves of all lines at 15/12°C. Palmitic, palmitoleic and stearic acid content did not differ significantly over temperatures. The oleic and linoleic acid content were each highest at 15/12°C, while the γ-linolenic and the linolenic acid content were each highest at 40/30°C. The fatty acid composition of the triglyceride portion of the leaf oil did not display the same pattern over temperatures as that observed for seed oil.  相似文献   

17.
Kim HK  Choi H 《Lipids》2001,36(12):1331-1336
This study was designed to examine the effects of dietary n−3 and n−6 polyunsaturated fatty acids (PUFA) on postprandial lipid levels and fatty acid composition of hepatic membranes. Male Sprague-Dawley rats were trained for a 3−h feeding protocol and fed one of five semipurified diets: one fat-free diet or one of four diets supplemented with 10% (by weight) each of corn oil, beef tallow, perilla oil, and fish oil. Two separate experiments were performed, 4-wk long-term and 4-d short-term feeding models, to compare the effects of feeding periods. Postprandial plasma lipid was affected by dietary fats. Triacylglycerol (TG) and total cholesterol levels were decreased in rats fed perilla oil and fish oil diets compared with corn oil and beef tallow diets. Hepatic TG and total cholesterol levels were also reduced by fish oil and perilla oil diets. Fatty acid composition of hepatic microsomal fraction reflected dietary fatty acids and their metabolic conversion. The major fatty acids of rats fed the beef tallow diet were palmitic, stearic, and oleic. Similarly, linoleic acid (LA) and arachidonic acid in the corn oil group, α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) in the perilla oil group, and palmitic acid and docosahexaenoic acid (DHA) in the fish oil group were detected in high proportions. Both long- and short-term feeding experiments showed similar results. In addition, microsomal DHA content was negatively correlated with plasma lipid levels. Hepatic lipid levels were also negatively correlated with EPA and DHA contents. These results suggest that n−3 ALA has more of a hypolipidemic effect than n−6 LA and that the hypolipidemic effect of n−3 PUFA may be partly related to the increase of EPA and DHA in hepatic membrane.  相似文献   

18.
We investigated the effect of oral supplementation with evening primrose oil, containing 72% linoleic acid (18∶2n−6) and 10% γ-linolenic acid (18∶3n−6), on the epidermal and neutrophil phospholipid fatty acid composition in 15 patients with atopic dermatitis (AD). Three different dose levels, 4, 8 and 12 capsules per day containing 0.5 g oil, were given to three groups of patients. The only n−6 fatty acid showing a significant (p<0.05) dose-related increase was dihomo-γ-linolenic acid (20∶3n−6) in neutrophil phospholipids. The highest dose increased dihomo-γ-linolenic acid by 45% in neutrophil phospholipids, by 46% in lesion-free epidermal phosphatidylcholine, and by 15% in lesion-free epidermal phosphatidylethanolamine. In both lesional and lesion-free epidermis, supplementation resulted in a rise in the ratio between n−6 and monounsaturated fatty acids, reaching significance (p<0.05) in lesional epidermis. This study shows that moderate and favorable fatty acid changes can be obtained in the epidermis of AD patients, when given 6 g per day of oil rich in n−6 fatty acids. The abnormal lipid and fatty acid pattern of the atopic epidermis may be involved in the pathogenesis of the disease, and should therefore be the target for future therapeutic approaches with fatty acid supplements.  相似文献   

19.
Following the suckling period, four groups of male four-week-old spontaneously hypertensive rats (SHR) were fed semisynthetic diets with 14% (by weight) of either sunflower seed oil [46% 18∶2(n−6); linoleic acid (LA)-rich], linseed oil [62.5% 18∶3(n−3)+12.9% 18∶2(n−6); α-linolenic acid (LNA)-rich], evening primrose oil [9.2% 18∶3(n−6)+71% 18∶2(n−6); γ-linolenic acid (LNA)-rich] or hydrogenated palm kernel fat [1.5% 18∶2(n−6); polyunsaturated fatty acid (PUFA)-deficient], respectively, up to an age of 18 wk. All diets enriched with PUFA provoked an attenuation of hypertension development. The effect was lowest in the LA-rich group and highest in the γ-LNA-rich group. Differences in fatty acid composition of renal phospholipids between groups reflect the fatty acids present in the respective dietary fats. Renomedullary production of PGF was significantly reduced in α-LNA-rich and slightly diminished in γ-LNA-rich fed rats. Aortic formation of 6-keto-PGF and TXB2 was increased in animals fed the γ-LNA-rich diet. Thus, the attenuation of hypertension development cannot be explained only by changes in prostanoid formation. Other mechanisms possibly involved should be pursued.  相似文献   

20.
Fractionation of blackcurrant seed oil   总被引:4,自引:0,他引:4  
Blackcurrant seed oil is known to be one of the richest natural sources of γ-linolenic (allcis-6,9,12-octadecatrienoic) acid, with values of up to 20% of this acid. These concentrations are sufficient for most applications of the oil, but some utilizations require higher concentrations of γ-linolenic acid. Blackcurrant seed oil also contains up to 14%α-linolenic (allcis-9,12,15-octadecatrienoic) acid. Different fractionation techniques have been evaluated to separate γ-linolenic acid specifically from the other fatty acids present in the oil and, in particular, fromα-linolenic acid. Distillation as well as fractionated crystallization at various temperatures did not give any reasonable results. Surprisingly enough, urea fractionation in methanol gives a specific separation ofα- and γ-linolenic acid, whereas stearidonic (allcis-6,9,12,15-octadecatetraenoic) acid, which is present at around 3% in the blackcurrant seed oil, cannot be separated by urea fractionation. Stearidonic acid, like γ-linolenic acid, has a double bond in the Δ6 position, which makes these two acids unique in this respect. This most probably explains their similar behavior toward urea-occlusion. Further semi-industrial preparative HPLC separations allowed us to obtain fractions of 95% γ-linolenic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号