首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
影响C/C复合材料中热解炭结构的工艺因素   总被引:2,自引:0,他引:2  
李晋  崔红  李瑞珍 《炭素》2008,(2):11-17
热解炭结构是影响C/C复合材料性能的重要因素,通过工艺条件的控制可以得到理想的热解炭结构,文章综述了影响C/C复合材料中热解炭结构的几类工艺因素,并对其作用机理进行阐述。  相似文献   

2.
化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能   总被引:1,自引:0,他引:1  
用化学气相渗透法制备了三维针刺碳纤维增强碳化硅陶瓷基复合材料,复合材料的平均密度为2.15 g/cm3,气孔率为16.0%.用氧乙炔焰研究了复合材料的烧蚀性能,用扫描电镜分析了烧蚀表面的形貌,用表面能谱分析了烧蚀产物的成分.复合材料的线烧蚀率和质量烧蚀率分别为0.03mm/s和0.004 7 g/s.在烧蚀中心区,烧蚀最严重,表层只有C纤维骨架,且C纤维呈针状,复合材料的烧蚀以升华和冲刷为主.在烧蚀过渡区,垂直于烧蚀面的C纤维表现出端部锐化、根部细化的特性,平行于烧蚀面的C纤维呈针状,复合材料的烧蚀以氧化和机械剥蚀为主.烧蚀边缘烧蚀不明显,烧蚀产物和SiC基体熔融后覆盖在烧蚀表面,阻碍了复合材料的进一步烧蚀,复合材料的烧蚀以氧化为主.  相似文献   

3.
化学气相沉积(CVD)法是目前制备C/C复合材料的首选方法,沉积炉内流场的均匀性直接影响目标产物的质量及产量。本文建立了CVD法制备C/C复合材料的沉积炉内气体流动仿真模型,采用计算流体力学方法对沉积炉内流场进行模拟,并研究主要工艺参数对沉积炉内流场分布的影响规律。结果表明,产品区域气体呈现低速均匀的流动特征,真空度增大会导致沉积炉内气体流速显著增加,但对流场均匀性几乎无影响;采用各路相同的送气方式时沉积炉内流场分布比中心增大的送气方式更均匀;较小进气量可以使沉积炉内流场更均匀。  相似文献   

4.
庞菲  崔红  李瑞珍 《炭素》2011,(4):18-22
综述了C/C复合材料CvI致密化过程中,气相反应、表面反应和扩散共同作用控制热解炭沉积的特点;讨论了沉积温度、气体压力、碳源气体种类、滞留时间、预制体等因素的影响.  相似文献   

5.
本文选用两个批次不同截面形貌的同种碳纤维,以高温煤沥青为前躯体,采用液相浸渍-碳化-石墨化相结合的技术制备了C/C复合材料.通过电镜图像分析计算,两个批次的碳纤维圆整度分别为0.87和0畅35.对两种C/C复合材料的力学性能、热学性能以及烧蚀性能进行测试,结果表明,碳纤维截面形貌对C/C复合材料拉伸性能、热学性能及烧蚀...  相似文献   

6.
张智  李飞  程文  嵇阿琳  王富强  白侠  纪玲玲 《炭素技术》2013,32(3):10-12,25
以T300炭纤维无纬布、网胎为原材料,层叠针刺成型炭纤维预制体,并采用化学气相沉积工艺对预制体进行致密,制成密度为1.55 g/cm3的针刺C/C复合材料。对针刺C/C复合材料的微观结构进行了观察分析,并对材料力学性能进行了测试。结果表明:化学气相沉积致密的针刺C/C复合材料呈现出以层间大量垂直纤维束为节点的类钉板状网状结构,这种特殊结构使材料层间结合更好,材料整个结构更加紧密;针刺C/C复合材料内部纤维被沉积形成的热解炭所包裹,热解炭的织构类型为光滑层(SL)和粗糙层(RL)并存;针刺C/C复合材料的各项力学性能均达到了较高水平,并且高温力学性能比常温力学性能有了很大幅度的提高。  相似文献   

7.
李伟  陈振华  张明  周海涛 《炭素》2007,(4):14-18
炭/炭(C/C)复合材料作为高温高强的新材料,在航空航天等高科技领域具有重要地位。本文对C/C复合材料的主要制备工序作了简单评述,重点分析比较了各种致密化工艺方法的优缺点,最后对C/C复合材料在各民用领域的应用趋向作了乐观展望。  相似文献   

8.
降低沥青基炭纤维增强C/C复合材料生产成本的研究一直受到关注.本文以鳞片石墨为基体,中间相沥青为黏结剂,炭纤维为增强相,提出了一种周期短、工艺简单的沥青基C/C复合材料的制备方法,并研究中间相沥青与石墨配比及低温预处理对C/C复合材料性能的影响.结果表明:适当的中间相沥青含量可使基体与炭纤维的界面牢固,低温预处理有利于...  相似文献   

9.
详细介绍了CVI理论的建立和发展,并在此基础上,对化学气相渗透中的气相组成与显微结构变化的关系,即气相组成变化对热解炭显微结构的影响进行了全面的分析。在介绍化学气相渗透技术发展的同时对化学气相渗透技术的最新进展进行了综述,特别是详细介绍了强制流动CVI、限域变温强制流动CVI、等离子体增强等温(或热梯度)低压CVI、HCVI技术、液相气化CVI等CVI新技术近几年来的最新发展,并在文后对未来化学气相渗透技术的发展进行了展望。  相似文献   

10.
在温度为1 348 K,压强15 kPa和停留时间1.0 s下,以甲烷为前驱体对两种不同厚度(16 mm和26 mm)2D炭纤维布预制体进行CVI热解炭致密.经120 h致密化后,将制备得到的炭/炭复合材料进行均匀切分,并测量样品的密度分布.实验结果表明,对于不同厚度的预制体,致密化后在气体流动的外侧密度都偏高,且样品...  相似文献   

11.
Jian-guo Zhao  Ke-zhi Li  He-jun Li 《Carbon》2006,44(4):786-791
A thermal gradient CVI process was investigated. A graphite heater in the center of a carbon felt disk preform was heated by Joule heating to a temperature of 900 °C, the carbon felt had a low thermal conductivity, and the rapid natural gas flow cooled the exterior surface of the preform. The rate constant of the chemical vapor deposition reaction increased exponentially with increasing temperatures with pyrocarbon being formed only in the designated deposition zone. Plugging of surface pores in the preforms, which often occurs in the isothermal CVI technology was unusual in this thermal gradient CVI process. As the deposition process went on, the deposited zone moved progressively towards the outside surface of the preform. The electrical resistance between two electrodes decreased gradually while the power of the thermal gradient CVI furnace increased non-linearly with the progressive densification. The temperature distribution in the thermal gradient furnace changed non-linearly with time and position. The relationship between temperature and position in the deposition zone followed the classical Fourier law. The microstructure of pyrocarbon at different positions was discussed.  相似文献   

12.
Hejun Li  Ruicheng Bai  Kezhi Li 《Carbon》2005,43(14):2937-2950
A parallel-consecutive reaction model of chemistry and kinetics is proposed to simulate homogeneous gas-phase reactions of propylene pyrolysis in CVI processes. An improved bipore model is also suggested to describe the changes of the pore topology with densification. The competition between the heterogeneous reactions of pyrolytic carbon deposition and the homogeneous reactions is analyzed by a numerical simulation method. Numerical simulation shows that continuous higher density region occurs early in a certain depth of the substrate, which blocks precursor transport into the deeper region. Changing processing parameters can alter when and where the continuous higher density region takes place. Inside-out densification is an inherent characteristic for CVI processes, while premature surface crusting is an apparent phenomenon. According to the concentration ration between C2Hx and C6Hy, the textures of pyrolytic carbon are successfully predicted. The present model is validated by comparing predicted with observed densities.  相似文献   

13.
J.I. Kim  W.-J. Kim  D.J. Choi  W.-S. Ryu 《Carbon》2005,43(8):1749-1757
To reduce the residual thermal stress between the carbon fiber-reinforced carbon (C/C) composites and the SiC coating layer, functionally graded materials (FGM) consisting of a C/SiC compositionally graded layer (C/SiC interlayer) were adopted. After designing the compositional distribution of the C/SiC interlayer which can relieve the thermal stress effectively, the deposition conditions of the entire compositional range of the C/SiC composites were determined using a thermodynamic calculation. According to the design and calculation the C/SiC interlayer and the SiC outer layer were deposited on the C/C composites by a low pressure chemical vapor deposition (LPCVD) method at deposition temperatures of 1100 and 1300 °C. The stress calculation and the experimental results suggested that the SiC-rich compositional profile in the FGM layer is the most effective for relieving the thermal stress and increasing the oxidation resistance.  相似文献   

14.
采用高温固相合成法二次灼烧工艺制备锂离子电池正极复合材料LiFePO4/C。经300℃和650℃二次灼烧,得到了从纳米到亚微米尺寸的LiFePO4和LiFePO4/C复合材料。X射线衍射(XRD)结果表明,所得到的LiFePO4和LiFePO4/C样品具有单一的橄榄石型晶体结构,且具高纯度。在多种碳源(如乙炔黑、Vulcan XC-72碳黑、鳞状石墨、各向异性石墨和葡萄糖)制备的LiFePO4/C复合材料中,以葡萄糖为碳源合成的样品具有最好的电化学性能。在电池工作温度由室温提高到40℃时,由于复合材料的电子电导率增大和锂离子在材料中的扩散速度加快,电池的充放电循环性能明显提高。  相似文献   

15.
16.
Thermal fatigue behavior of two-dimensional carbon fiber reinforced SiC matrix composites fabricated by chemical vapor infiltration technique was investigated using an on-line quench method in controlled environments which simulated an aero-engine gas. A system of damage information acquisition (SDIA) was developed to study changes in electrical resistance of the C/SiC composites during their damage in dynamic testing. Damage to composites was assessed by the ultimate tensile strength (UTS) and SEM characterization. The results showed that: (1) under different atmosphere, the 2D-C/SiC composites subjected to thermal cycling behaved very differently and the most sensitive atmosphere was the wet oxygen; (2) external load could accelerate the degradation of the composites and changed the oxidation regimes of fibers; (3) the electrical resistance of the specimen could be detected on-line, stored in real time and analyzed reliably by the newly-developed SDIA; (4) 2D-C/SiC composites had an excellent thermal fatigue resistance in different environments.  相似文献   

17.
In this work, the needled carbon fiber preforms were used to make seven groups of carbon/carbon composite billets with different matrix carbon contents by controlling the processing time of chemical vapor infiltration (CVI). Cf/C–SiC composites were prepared by infiltration of SiC into these C/C composites billets using polycarbosilane (PCS) through precursor infiltration and pyrolysis (PIP). After oxy-acetylene torch testing (heat flux of 4.2 MW/m2) for 200s, 300s and 400s, respectively, it revealed that the anti-ablation properties of the Cf/C–SiC composite samples were enhanced by a higher content of SiC matrix. Additionally, specimens bearing longer duration tests showed a trend of lower average ablation rates. The lowest linear ablation rate is 0.008 mm/s and the mass ablation rate is 0.0019 g/s for those high SiC content samples tested for 400s. The SEM images of the tested samples showed the mechanism and the non-linear process of ablation resistance progression.  相似文献   

18.
The thermal shock behavior of a three-dimensional carbon fiber reinforced SiC matrix fabricated by chemical vapor infiltration (CVI) technique was studied using the air quenched method. Damage to composites was assessed by a destructive technique of measuring mechanical properties using three-point flexure and SEM characterization. C/SiC composites displayed good resistance to thermal shock, and retained 83% of the original strength after quenching from 1300 to 300°C 100 times. The critical ΔT of C/SiC in combustion environment was 700°C. The critical number of thermal shocks for the C/SiC composite was about 50 times. When the number of thermal shocks was less than 50 times, the residual flexural strength of C/SiC composites decreased with the increase of thermal shock times. When the number of thermal shocks of C/SiC was greater than 50, the strength of C/SiC did not further decrease because the crack density was saturated.  相似文献   

19.
Fast densification processes have been developed to improve the fabrication of C/C composite materials. In this work, a comparison is made between two techniques: the film boiling technique with a liquid reagent and the gas infiltration method. In both methods, the same home-made reactor was used. For the film boiling technique, the preform is either wrapped or not with a porous thermal barrier.Two different substrates have been densified, a carbon felt (RVC-2000® from Le Carbone-Lorraine), and a 3D carbon cloth (Novoltex® from Snecma). In situ temperature gradients and their temporal changes during the infiltration process have been recorded together with the delivered power necessary to maintain a constant deposition temperature. From these experiments, we have concluded about the following main points:
the analysis of in situ parameters, powers and temperatures, and the associated profiles of the pyrocarbon deposits,
the matrix quality with their associated microstructures as characterized by helium density, optical microscopy and Raman scattering experiments,
the key role of the evolutive preforms as heat and mass exchangers during the process, and the assisted thermal fluxes inside the reactor.
This paper presents results which should allow to control automatically the process at an industrial scale.  相似文献   

20.
《Ceramics International》2022,48(21):31354-31362
A thermodynamic calculation on the HfB2 coating prepared by chemical vapor deposition (CVD) through HfCl4-BCl3-H2-Ar system was performed, together with the relevant verification experiments. The calculation results indicated that HfB2 coating could be obtained above 900 °C with the ratios of BCl3/HfCl4 and H2/HfCl4 higher than 1 and 12, respectively. The experimental results demonstrated that the deposition temperature, H2 and BCl3 flow rates had significant effects on the grain size, growth rate and phase composition of HfB2 coatings. A dense and uniform HfB2 coating was prepared at 1150 °C with a BCl3/HfCl4 ratio of 3 and a H2/HfCl4 ratio of 20, whose mass and linear ablation rates were 15.61 mg/s and 15.58 μm/s under oxyacetylene flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号