首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main interaction mechanisms affecting the pullout resistance of geogrids embedded in soils are the skin friction between soil and reinforcement solid surface and the bearing resistance which develops against transversal elements. As regards bearing resistance the interference mechanism plays an important role: this can occur when the spacing between transversal members is lower than a threshold value, depending on the extensions of active and passive surfaces mobilized on bearing members.Based on the result of several large-scale pullout tests, a theoretical method to determine the peak pullout resistance of extruded geogrids embedded in a compacted granular soil is proposed. The method takes into account the interference mechanism due to the proximity of the transversal bearing members and works well for soil-geogrid interfaces in which scale effect is negligible.  相似文献   

2.
为研究土工格栅纵横肋与砂土的界面受力特性,进行了不同法向压力的格栅拉拔试验,分别设计了横向与纵向剪除横肋的6种拉拔试验工况,研究横肋减少对格栅受力、拉拔阻力峰值和位移及似摩擦系数的影响,并分别对比了整体剪切和刺入剪切破坏模式下的格栅拉拔阻力,揭示格栅筋土界面的相互作用机理。结果表明,随着横肋的减少,格栅拉拔阻力和似摩擦系数不断地变小;横肋沿横向减少的格栅最大拉拔阻力大于横肋沿纵向减少的最大拉拔阻力,完整横肋有助于筋土界面的加筋作用的充分发挥。理论计算格栅界面摩擦力约为18%~19%的试验拉拔阻力,而试验获得的格栅界面摩擦力与试验拉拔阻力的比值为29%~33%,横肋与土体挤压咬合产生的承载力分量占了总拉拔阻力的67%~71%,横肋极大提高了土工格栅的拉拔阻力。  相似文献   

3.
This paper presents an evaluation of the interlocking behaviour of geogrid-reinforced railway ballast. Experimental large box pull-out tests were conducted to examine the interaction between ballast and a biaxial geogrid. The discrete element method (DEM) was then used to model the interaction between the ballast and the geogrid by simulating large box pull-out tests and comparing the findings with the experimental results. Four different shapes of clumps were used to represent each ballast particle in order to obtain an acceptable shape for modelling the railway ballast. The DEM simulation results were shown to provide good predictions of the pull-out resistance and to examine the effect of clump shape on both the pull-out resistance and the distribution of contact forces. Therefore, the calibrated geogrid model and the 8-ball tetrahedral clumps, used as ballast particles, hold much promise for investigating the interaction between geogrids and ballast, and thus, optimising performance.  相似文献   

4.
In current study, large-scale pull-out tests were conducted to examine the behavior of a novel reinforcement system named “Pegged Geogrid” (PG) under pull-out loading condition. Metal pegs were combined with geogrid to enhance resistance to pull-out. Incorporating pegs with geogrids alleviates bolting, welding, clamping, increasing geogrid length or making alterations to the geogrid as recommended by previous researchers. Peg roots are simply inserted/driven through apertures into the soil, nailing the geogrid to the lower and subsequently the upper backfill layers. Effects of soil particle size, normal pressure, peg length, width, and numbers has been evaluated using two sandy and a gravely soil. Results show that inclusion of pegs significantly enhances soil passive resistance contribution to pull-out. Increasing the width and number of pegs, resulted in enhancing passive soil resistance activation in front of the bearing surfaces and thus greater pull-out resistance augmented by soil particle size and normal pressure. Displacements corresponding to maximum pull-out forces gradually improved by peg width and strain distribution along geogrid in the PG system progressively became linear in contrast to the non-linear distribution in the conventional soil-geogrid (NG) system. Normal pressure was more influential on enhancing pull-out resistance in coarser soil.  相似文献   

5.
自密实高性能混凝土结构的研究与应用   总被引:10,自引:0,他引:10  
以自密实高性能混凝土的配合比优化设计为基础, 对自密实高性能混凝土的钢筋粘结锚固性能、受弯构件的抗弯、抗剪受力性能、框架结构的抗震性能等进行了深入系统的试验研究。包括中强与高强自密实混凝土,共做了62个粘结强度拉拔试验、12根梁抗弯抗剪承载力试验、4榀框架采用MTS伺服加载系统进行的抗震性能试验, 研究结果为自密实高性能混凝土结构的设计提供了参考。还介绍了自密实高性能混凝土在33层高层建筑加固工程中的应用, 总结了工程应用中的经验。  相似文献   

6.
Large size direct shear tests (i.e.300 × 300 × 200 mm) were conducted to investigate the possibility of strength enhancement of clays reinforced with geogrids embedded in thin layers of sand. In this paper test results for the clay, sand, clay–sand, clay–geogrid, sand–geogrid and clay–sand–geogrid samples are presented and discussed. Thin sand layers with thicknesses of 4, 6, 8, 10, 12 and 14 mm were used to quantify their effect on the interaction between the clay and the geogrids. In this regard effects of sand layer thickness, normal pressure (i.e. confinement) and transversal members of geogrids were investigated. All the tests were conducted using saturated clay with no drainage allowed. Test results indicate that provision of thin layers of sand for encapsulating the geogrids is very effective in improving the strength and deformation characteristics of saturated clay. Maximum strength enhancement was derived at an optimum sand layer thickness of 10 mm which proved to be independent of the magnitude of the normal pressure used. For a particular sand layer thickness, increasing the normal pressure resulted in enhanced strength improvement. Results also showed that removal of the geogrid transversal members resulted in reducing the strength of the reinforced samples by 10% compared to geogrids with transversal members. Encapsulating geogrids in thin layers of sand not only will improve the performance of clays if used as backfill it would also provide drainage paths preventing pore water pressure generation on saturation of the backfill.  相似文献   

7.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   

8.
利用自制的模型试验设备,在平潭标准砂中对玻纤网布和土工格栅进行了一系列拉拔试验,应用数字照相变形量测技术,从细观角度研究土工合成材料(片状的和格栅状的)接触界面的变形模式,得出接触面的形式和厚度,还研究了土工格栅横肋作用下土体的破坏模式。接触界面区域在传统意义上并不被认为是剪切带,本文模型试验的结果表明二者在本质上是一致的。在土工格栅拉拔试验中,土工格栅的位移逐步从前部向后部发挥,出现上下两条接触面区域,其厚度在密砂和松砂拉拔试验中相当于5倍和7.5倍平均颗粒直径;在玻纤网布拉拔试验中,只出现一条接触面,其厚度为7.5倍平均颗粒直径;随着位移的增加,格栅横肋在土中的最大剪应变集中区域呈“x”形,但并不对称。本文揭示了加筋土的宏细观力学机理,研究内容、方法和主要结论可为类似的研究提供参考,并从细观机理上为接触界面的研究提供新的认识和理解。  相似文献   

9.
软土地基螺旋桩竖向抗拔极限承载力计算方法   总被引:2,自引:0,他引:2  
 根据抗拔螺旋桩基础竖向抗拔承载性状,使用极限平衡理论和Meyerhof深基础承载力理论,提出抗拔螺旋桩基础首层叶片界限埋深和叶片控制间距,给出多层叶片螺旋桩基础竖向抗拔破坏模式,得到竖向抗拔螺旋桩基础的首层叶片界限埋深和极限承载力计算公式。通过对14次工程桩试验分析和极限承载力计算,竖向抗拔极限承载力计算值与实测值误差一般在10%以内,说明所建立的螺旋桩基础抗拔破坏模式比较接近于实际情况,极限承载力计算方法可用于估算螺旋桩基础的承载力。  相似文献   

10.
土工格栅控制液化土体流动变形的试验研究   总被引:1,自引:0,他引:1  
陈育民  周晓智  徐君 《岩土工程学报》2017,39(10):1922-1929
液化导致的土体大变形以及侧向流动是地震引起建筑物破坏的主要原因。采用土工格栅作为主要加固材料,开展建筑物荷载作用下液化场地流动变形的振动台试验研究,考虑水平层状土工格栅、包裹状土工格栅和土工格栅+无纺布联合处理等3种加固方案对结果的影响,从超孔隙水压力发展、建筑物沉降量以及格栅应变特性等分析加固方案对液化变形的处理效果。试验表明:采用上述3种加固方案所得的相同埋深处超孔隙水压力峰值基本相等,表明土工格栅的加入基本不能改变地基的液化状态,而后期超孔隙水压力在土工格栅+无纺布联合加固方案下消散速度最快。与其它两种加固方案相比,土工格栅+无纺布联合加固方案下建筑物沉降量最小,相比未加固工况沉降量减少24%,土工格栅中间位置的应变峰值小于边缘位置的应变峰值。采用土工格栅+无纺布联合加固时,具有较大表面积的无纺布对该覆盖区域液化土体有较好的约束作用,限制了砂土颗粒的竖向移动。此外,砂土颗粒对无纺布的作用力将由土工格栅承担,这种作用力将有利于土工格栅与砂土之间的摩擦效应,进一步限制液化砂土的流动变形。  相似文献   

11.
Geogrid pullout tests have been regarded as the most direct and effective way to describe the interfacial behavior between geogrid and soil. To investigate the coupled effects of geogrid transverse members and top-loading boundaries on the geogrid-soil interaction, numerical simulations of geogrid pullout tests using the Discrete Element Method (DEM) were carried out in this study. The rigid top boundary was simulated by a rigid wall, while the flexible top boundary was modeled with a string of bonded particles that could rotate and move up and down freely. The coupled effects of geogrid transverse members and top boundary conditions on the geogrid-soil interaction under pullout loads were visualized not only by the force distributions along the geogrids and in the specimens but also by the displacements of soil particles and geogrids. Additionally, the quantitative geogrid force and strain distributions along the geogrids, the lateral force distributions on the front walls, and the vertical displacements of top boundaries also showed the influence of transverse members on the geogrid pullout behavior considering the rigid and flexible top boundaries. The DEM investigation results of this study may provide helpful guidelines for regulating the geogrid pullout test apparatus and methods.  相似文献   

12.
One of the most useful geosynthetics in soil reinforcement is geogrid due to its high tensile strength, having a great influence on soil skeleton reinforcement and eventually, increasing bearing capacity of the foundation. In this research, a series of 36 repeated plate load tests have been carried out to investigate the scale effect on geogrid-reinforced soil, tending to further understanding of the behaviour of geogrid-reinforced soil system. Four different soil grains sizes, two different geogrid's aperture sizes (with roughly the same tensile strength) and three different loading plate sizes are the variables considered. During the tests, the applied loading and soil surface settlements were recorded to evaluate the systems' response. As it was expected, the reinforced soil exhibited higher bearing capacity than the unreinforced status, up to 635%. The results show that increasing loading plate size and soils' particle size fortify the response of foundation, especially in reinforced status, against the loading plate penetration. The results further focused on the important role of scale effect on the response of reinforced foundation. It was understood that the optimum nominal aperture size of geogrids should be about 4 times of medium grain size of soil. Also, it was found out that in order to acquisition of highest reinforcement benefits, the footing's width should be in the range 13–25 (20 in average) times of medium grain size of the backfill. Finally, to achieve the best results, it is recommended that the aperture size of geogrids should be selected roughly 0.2 times of footing width.  相似文献   

13.
Current design regulations preclude the usage of cohesive backfills in reinforced soil structures regardless of whether the reinforcement is metallic or polymer fabric. The main reasons for this are: firstly, cohesive materials can be expansive; and secondly, the maximum bond strength between the reinforcement and the clay is normally not expected to be more than the undrained strength of the clay, giving no advantage. However, low-plasticity (so-called semi-cohesive) soils are not expansive and could be used in reinforced soil structures provided the reinforcement can give an increase in strength. A large number of shearbox and pull-out tests have been carried out to investigate which are the major factors governing the clay-geotextile interaction in both undrained and drained conditions. Woven and non-woven fabrics and meshes were used in the tests. The results have shown that the shearing strength of clay can be increased by properly selected geotextile reinforcement in both undrained (short-term) and drained (long-term) loading. It has been also shown that the pull-out resistance of the geotextile reinforcement is essentially proportional to the normal stress and for high transmissivity geotextiles or for geogrids it is limited by the tensile strength and relaxation of the material. The low transmissivity however is also a factor obstructing the development of high pull-out resistance in undrained conditions. The results indicate that geotextile reinforced cohesive backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.  相似文献   

14.
Though it is known that the geometric features of geogrids are crucial for deriving optimal interface shear strength, not much work is done to optimize the size and shape of the apertures relative to the particle size of the soils in contact. Most of the commercial geogrids have rectangular or square apertures, which are many times bigger than the soil particles. The present study explores the effects of aperture size and shape of geogrids relative to the size of the sand particles on their interface shear response through direct shear tests and digital image analysis. Geogrids of different aperture sizes and shapes were manufactured using a 3D printer. Shear tests were carried out on three sands of different grain sizes interfacing with geogrids of five different aperture sizes and three different aperture shapes. Through these tests, interface shear response with a wide range of aperture ratio and different shapes of geogrids is understood. Shear zone thickness of different sand-geogrid interfaces was computed through Particle image velocimetry (PIV). Based on the tests and analyses, triangular apertures are found to be more efficient compared to other apertures. The optimal range of aperture ratio is found to be 2–11.29.  相似文献   

15.
A new analytical approach able to predict the mechanical behaviour of fully grouted rockbolts subjected to pull-out tests is proposed in this paper. Input parameters of such approach are: bolt radius, bolt’s Young modulus, displacement of the free end of the bolt and the constitutive law of the rockbolt–grout joint interface. The limited circumstances under which it is accurate to determine such constitutive law from pull-out tests are also presented. A solution for the load–displacement curve obtained during pull-out tests has been developed and is detailed in the case of a tri-linear bond-slip model. Comparison with experimental results obtained via in situ pull-out tests has led to the validation of this approach.  相似文献   

16.
土工格栅拉拔试验被认为是研究土工格栅与土相互作用行为最直接有效的方法。在土工格栅拉拔试验中,常采用刚性或柔性顶部边界条件施加竖向荷载。为了研究刚性与柔性顶部边界条件对拉拔试验结果的影响,基于离散元数值模拟,从细观层面深入分析了刚性与柔性顶部边界条件下土工格栅与土的力学响应。研究结果表明:在拉拔位移较小的情况下,刚性与柔性顶部边界条件对拉拔试验结果几乎没有影响;随着拉拔位移的增大,顶部边界条件对拉拔试验结果的影响逐渐明显,刚性顶部边界条件下的最大拉拔阻力略大于柔性顶部边界条件下的最大拉拔阻力;土工格栅张力与试样内部土颗粒间接触力分布情况、试样内部土颗粒旋转情况以及顶部加载板颗粒的竖向位移分布规律直观地展现了顶部边界条件对拉拔试验结果的影响。本研究结果有望为规范土工格栅拉拔试验方法提供科学依据。  相似文献   

17.
地工格网(以下称格网)用於加劲土壤时,除考虑无围压下的张力行为之外,围压下之力学性质更是设计考量的重点。实际工程应用而言,基於经济考虑,期以现地土壤作为回填材料。本研究分别以拉出、围压抗张与直剪三种试验来探讨格网放土壤中之力学行为;并利用凝聚性泥岩与非凝聚性细砂作为回填材料,评估两种回填材料对加劲成效之影响。结果显示,柔性格网之肋条在拉出过程中易扭曲,造成主应力面旋转的现象,以致拉出阻抗大放硬性格网;围压下格网抗张的应力-应变行为可分为三阶段,即束制阻抗期、张力发展期与破坏期。束制阻抗期大都於3%应变内即已完成;在低围压情况拉出阻抗达20%~60%之拉出强度(相同应变),在高围压下达150%。由直接剪力试验结果可以预测:(a)格网/泥岩加劲结构-低围压时,剪力破坏面应通过格网/泥岩之界面;而高围压时,剪力破坏面应通过泥岩上体。(b)格网/细砂加劲结构-低围压与高围压下剪力破坏面应通过格网/细砂之界面。  相似文献   

18.
基于静载作用下加筋土柔性桥台结构工作性能的试验研究,综合对比分析桥台基础距下部挡墙面板的距离D对柔性桥台结构极限承载力、下部挡墙变形特点、筋材应变和土压力的影响。试验结果表明:当下部加筋挡墙中筋材长度为整体桥台高度时,桥台结构极限承载力随偏移距离D增加呈现先增加后减小趋势,且在D为0.4HL(HL为下部挡墙高度)时达到最大值;加筋柔性桥台整体结构加载至破坏前一级载荷时,桥台基础沉降与台背加筋土顶部沉降均呈近似线性变化,且D/HL为0.4时二者差异沉降最小;挡墙面板顶部的水平位移明显大于中、底部,且挡墙水平位移与挡墙高度比值均小于1%;挡墙中各层筋材应变最大值随D增加而逐渐向远离面板方向发展,且D为0.4HL时台背加筋土和下部挡墙加筋中筋材的应变相差不大,整体柔性桥台结构工作性能达到最佳状态。  相似文献   

19.
加筋风砂土抗拔试验研究(II)——抗拔载荷能力计算分析   总被引:1,自引:0,他引:1  
通过对典型沙地土样的分析试验和室内模型试验,对未加筋风砂土和土工格栅的15种不同加筋条件下风砂土地基扩展基础的上拔承载性能进行了试验研究.根据试验结果,确定了加筋风砂土地基扩展基础承受上拔荷载的计算模式和理论计算公式.研究了分别由风砂土和土工格栅引起的上拔承载能力,按计算值和实测值分项进行了对比分析,提出了有效的土工格栅加筋形式,即平铺一层和二层土工格栅.提出了进一步需要研究的"锚固长度"问题.  相似文献   

20.
长期荷载作用下土工格栅蠕变特性的试验研究   总被引:1,自引:0,他引:1  
为探讨长期荷载作用下土工格栅的蠕变特性,在不同的外加荷载和环境温度的各种组合条件下,进行土工格栅的室内蠕变试验,以此获得格栅的蠕变关系曲线、载荷-应变等时曲线及拉伸模量的变化特征,并进行综合对比分析。根据试验与分析发现:荷载水平、环境温度和材料生产工艺是影响土工格栅长期蠕变特性的重要因素。进而,采用时温叠加原理,对于某一给定环境温度下确定土工格栅长期强度的经验估算模式和蠕变强度折减系数。试验结果与理论分析为土工格栅加筋结构长期工作性能的分析与评价提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号