首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
利用超高真空化学气相淀积(UHV/CVD)设备,在掺As n+型Si衬底上生长了掺P n-型Si外延层.用扩展电阻法分析了在不同的生长温度和PH3气体流量下生长的Si外延层的过渡区厚度.结果表明,生长温度对n+-Si衬底的As外扩有明显影响,在700℃下生长的Si外延层的过渡区厚度为0.16μm,而在500℃下仅为0.06μm,且杂质分布非常陡峭.X射线双晶衍射分析表明在700℃下生长的Si外延层的质量很高.制作的锗硅异质结晶体管(SiGe HBT)的击穿特性很硬,击穿电压为14.5V,在 V CB =14.0V下的漏电流仅为0.3μA;输出特性很好,在 V CE =5V, I C=3mA时的放大倍数为60.  相似文献   

2.
利用自制的冷壁石英腔UHV/CVD设备,600℃条件下,通过Ge组分渐变缓冲层技术,在Si(100)衬底上成功地生长出完全弛豫、无穿透位错的Si0.38Ge0.17外延层,并在其上获得了具有张应变的Si盖帽层.另外,还在550℃下生长了同样结构的样品,发现此样品厚度明显变薄,组分渐变层的应变释放不完全,位错网稀疏而且不均匀,其上的Si0.83Ge0.17外延层具有明显的穿透位错.  相似文献   

3.
弛豫SiGe外延层的UHV/CVD生长   总被引:2,自引:3,他引:2  
利用自制的冷壁石英腔UHV/CVD设备,600℃条件下,通过Ge组分渐变缓冲层技术,在Si(100)衬底上成功地生长出完全弛豫、无穿透位错的Si0.83Ge0.17外延层,并在其上获得了具有张应变的Si盖帽层.另外,还在550℃下生长了同样结构的样品,发现此样品厚度明显变薄,组分渐变层的应变释放不完全,位错网稀疏而且不均匀,其上的Si0.83Ge0.17外延层具有明显的穿透位错  相似文献   

4.
UHV/CVD低温生长硅外延层的性能研究   总被引:3,自引:2,他引:3  
本文利用自行研制的一台超高真空化学气相沉积(UHV/CVD)系统,在780℃下进行了硅低温外延,取得了表面平整、缺陷密度低、界面质量良好、界面杂质分布陡峭的薄外延层  相似文献   

5.
利用 Si H4 和 Ge H4 作为源气体 ,对 UHV/CVD生长 Si1- x Gex/Si外延层的表面反应机理进行了研究 ,通过 TPD、RHEED等实验观察了 Si( 1 0 0 )表面 Si H4 的饱和吸附、热脱附过程 ,得出 Si H4 的分解应该是每个 Si H4 分子的 4个 H原子全部都吸附到了 Si表面 ,Si H4 的吸附率正比于表面空位的 4次方 ,并分析了 Ge H4 的表面吸附机制 .在此基础上建立了 UHV/CVD生长Si1- x Gex/Si的表面反应动力学模型 ,利用模型对实验结果进行了模拟 ,二者符合得很好  相似文献   

6.
利用SiH4和GeH4作为源气体,对UHV/CVD生长Si1-xGex/Si外延层的表面反应机理进行了研究,通过TPD、RHEED等实验观察了Si(100)表面SiH4的饱和吸附、热脱附过程,得出SiH4的分解应该是每个SiH4分子的4个H原子全部都吸附到了Si表面,SiH4的吸附率正比于表面空位的4次方,并分析了GeH4的表面吸附机制.在此基础上建立了UHV/CVD生长Si1-xGex/Si的表面反应动力学模型,利用模型对实验结果进行了模拟,二者符合得很好.  相似文献   

7.
UHV/CVD生长SiGe/Si异质结构材料   总被引:6,自引:5,他引:6  
以 Si2 H6 和 Ge H4 作为源气体 ,用 UHV/CVD方法在 Si( 1 0 0 )衬底上生长了 Si1- x Gex 合金材料和 Si1- x Gex/Si多量子阱结构 .用原子力显微镜、X光双晶衍射和透射电子显微镜对样品的表面形貌、均匀性、晶格质量、界面质量等进行了研究 .结果表明样品的表面平整光滑 ,平均粗糙度为 1 .2 nm;整个外延片各处的晶体质量都比较好 ,各处生长速率平均偏差为 3.31 % ,合金组分 x值的平均偏差为 2 .0 1 % ;Si1- x Gex/Si多量子阱材料的 X光双晶衍射曲线中不仅存在多级卫星峰 ,而且在卫星峰之间观察到了 Pendellosung条纹 ,表明晶格质量和界面质量都很好 ;Si  相似文献   

8.
以Si2H6和GeH4作为源气体,用UHV/CVD方法在Si(100)衬底上生长了Sil-xGex合金材料和Si1-xGex/Si多量子阱结构.用原子力显微镜、X光双晶衍射和透射电子显微镜对样品的表面形貌、均匀性、晶格质量、界面质量等进行了研究.结果表明样品的表面平整光滑,平均粗糙度为1.2nm;整个外延片各处的晶体质量都比较好,各处生长速率平均偏差为3.31%,合金组分x值的平均偏差为2.01%;Si1-xGex/Si多量子阱材料的X光双晶衍射曲线中不仅存在多级卫星峰,而且在卫星峰之间观察到了Pendellosung条纹,表明晶格质量和界面质量都很好;Si1-xGex/Si多量子阱材料的TEM照片中观察不到位错的存在.  相似文献   

9.
采用自行研制的超高真空化学气相淀积(UHV/CVD)设备,研究了在550℃下SiO2薄膜上多晶SiGe成核时间和生长速率与GeH4和B2H6流量的关系,以及不同温度下快速热退火对多晶SiGe电阻率的影响。实验结果表明,多晶SiGe成核时间随GeH4流量的增加而增加;在小的GeH4流量下,其生长速率随GeH4和B2H6流量的增加而增加,但比同等务件下单晶SiGe生长速率低;其电阻率随GeH4流量的增加而下降,随快速热退火温度的升高而下降。  相似文献   

10.
VLP/CVD低温硅外延   总被引:2,自引:0,他引:2  
谢自力  陈桂章  洛红  严军 《微电子学》2001,31(5):357-359
研究了VLP/CVD低温硅外延生长技术,利用自制的VLP/CVD设备,在低温条件下,成功地研制出晶格结构完好的硅同质结外延材料。扩展电阻、X射线衍射谱和电化学分布研究表明,在低温下(T<800℃)应用VLP/CVD技术,可以生长结构完好的硅外延材料,且材料生长界面的杂质浓度分布更陡峭。  相似文献   

11.
在微波双极型晶体管中,收集区的厚度是影响其截止频率的一个重要因素。普通的常压外延难以生长出杂质浓度变化陡峭的薄外延层。文章利用自行研制的超高真空化学气相淀积(UHV/CVD)系统SGE500,在N型(掺As)重掺杂衬底上进行了薄本征硅外延层生长规律的研究;并采用扩展电阻(SPR)、原子力显微镜(AFM)、双晶衍射(DCXRD)等方法,对外延层的质量进行了评价。采用该外延材料制作的锗硅异质结双极型晶体管(SiGe HBT)器件击穿特性良好。  相似文献   

12.
超高真空化学气相生长用于应变硅的高质量SiGe缓冲层   总被引:4,自引:1,他引:3  
采用UHV/CVD技术,以多层SiGe/Si结构作为缓冲层来生长应变弛豫SiGe虚衬底,并在此基础上生长出了具有张应力的Si层.利用高分辨X射线、二次离子质谱仪和原子力显微镜分别对薄膜的晶体质量、厚度以及平整度进行了分析.结果表明,通过这种方法制备的SiGe虚衬底,不仅可以有效提高外延层中Ge含量,以达到器件设计需要,而且保证很好的晶体质量和平整的表面.Schimmel液腐蚀后观察到的位错密度只有1×106cm-2.  相似文献   

13.
采用UHV/CVD技术,以多层SiGe/Si结构作为缓冲层来生长应变弛豫SiGe虚衬底,并在此基础上生长出了具有张应力的Si层.利用高分辨X射线、二次离子质谱仪和原子力显微镜分别对薄膜的晶体质量、厚度以及平整度进行了分析.结果表明,通过这种方法制备的SiGe虚衬底,不仅可以有效提高外延层中Ge含量,以达到器件设计需要,而且保证很好的晶体质量和平整的表面.Schimmel液腐蚀后观察到的位错密度只有1×106cm-2.  相似文献   

14.
HV/CVD系统Si、SiGe低温掺杂外延   总被引:5,自引:2,他引:3  
研究了硼烷 (B2 H6 )掺杂锗硅外延和磷烷 (PH3)掺杂硅外延的外延速率和掺杂浓度与掺杂气体流量的关系 .B浓度与 B2 H6 流量基本上成正比例关系 ;生长了 B浓度直至 10 1 9cm- 3的多层阶梯结构 ,各层掺杂浓度均匀 ,过渡区约 2 0 nm,在整个外延层 ,Ge组分 (x=0 .2 0 )均匀而稳定 .PH3掺杂外延速率随 PH3流量增加而逐渐下降 ;P浓度在 PH3流量约为 1.7sccm时达到了峰值 (约 6× 10 1 8cm- 3) .分别按 PH3流量递增和递减的顺序生长了多层结构用以研究 PH3掺杂 Si外延的特殊性质  相似文献   

15.
首先论述了 Si Ge技术的优势、发展历史和应用领域 ,并介绍了 Si Ge工艺和器件的进展 ,最后详细描述了 Si Ge IC的进展  相似文献   

16.
用于SiGe材料生长的新型UHV/UV/CVD系统   总被引:5,自引:0,他引:5  
介绍了新近研制的用于SiGe材料生长的超高真空(UHV)/紫外光(UV)/能量辅助CVD工艺系统。  相似文献   

17.
在SiGeHBT的制造工艺中,为了防止干法刻蚀发射极台面对外基区表面造成损伤,从而导致SiGeHBT小电流下较大漏电问题,对SiGeHBT发射极台面的湿法腐蚀技术进行了研究。通过改变超声功率、腐蚀液温度,从中获得了较为理想的腐蚀条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号