首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric control scheme is an approach to achieve zero-voltage switching (ZVS) for half-bridge isolated dc-dc converters. However, it is not suited for wide range of input voltage due to the uneven voltage and current components stresses. This paper presents a novel "duty-cycle-shifted pulse-width modulated" (DCS PWM) control scheme for half-bridge isolated dc-dc converters to achieve ZVS operation for one of the two switches without causing the asymmetric penalties in the asymmetric control and without adding additional components. Based on the DCS PWM control scheme, an active-clamp branch comprising an auxiliary switch and a diode is added across the isolation transformer primary winding in the half-bridge converter to achieve ZVS for the other main switch by utilizing energy stored in the transformer leakage inductance. Moreover, the auxiliary switch also operates at ZVS and zero-current switching (ZCS) conditions. Furthermore, during the off-time period, the ringing resulted from the oscillation between the transformer leakage inductance and the junction capacitance of two switches is eliminated owing to the active-clamp branch and DCS PWM control scheme. Hence, switching losses and leakage-inductance-related losses are significantly reduced, which provides the converter with the potential to operate at higher efficiencies and higher switching frequencies. The principle of operation and key features of the proposed DCS PWM control scheme and two ZVS half-bridge topologies are illustrated and experimentally verified.  相似文献   

2.
This article presents the circuit implementation and design considerations of a zero voltage switching (ZVS) converter with voltage step-up for battery-based applications. An active-clamp circuit including one auxiliary switch and one clamp capacitor is connected in parallel with the main switch to allow resonant behaviour by the output capacitances of switches and transformer leakage inductance during the transition interval. Thus, the ZVS turn-on of switches can be achieved. The switching losses and thermal stresses of the semiconductors are reduced. The circuit configuration, operation principle and design considerations of the converter are discussed in detail. Finally, experiments conducted on a laboratory prototype rated at 200 W are provided to verify the theoretical analysis and the effectiveness of the proposed converter.  相似文献   

3.
An active clamp SEPIC converter with synchronous rectifier is presented to achieve zero voltage switching (ZVS). The active clamp circuit is adopted in the proposed converter to absorb the energy stored in the leakage inductance of the transformer and limit the peak voltage stress on the switching devices. The resonance during the transition interval between the switching devices will help the power switches to turn on at ZVS. Therefore, the switching losses of switches are effectively reduced. The synchronous rectifier is used at the secondary side of the transformer to further reduce the conduction loss. The principle of operation and the steady-state analysis of the proposed converter are presented. Finally, the experimental results taken from a laboratory prototype with 240 W (12V/20A) rated power are presented to verify the effectiveness of the proposed converter.  相似文献   

4.
The analysis and design of an LCC resonant inverter for a 20 kHz AC distributed power system are presented. Several resonant converter topologies are assessed to determine their suitability for high efficiency power conversion, under resistive and reactive loads. Two LCC-resonant inverter designs were implemented. One with all switches operating with zero voltage switching (ZVS), and another with two switches operating with ZVS and two switches with zero current switching (ZCS). The experimental results are presented along with a performance comparison of the two versions  相似文献   

5.
A new active clamping zero-voltage switching (ZVS) pulse-width modulation (PWM) current-fed half-bridge converter (CFHB) is proposed in this paper. Its active clamping snubber (ACS) can not only absorb the voltage surge across the turned-off switch, but also achieve the ZVS of all power switches. Moreover, it can be applied to all current-fed power conversion topologies and its operation as well as structure is very simple. Since auxiliary switches in the snubber circuit are switched in a complementary way to main switches, an additional PWM IC is not necessary. In addition, it does not need any clamp winding and auxiliary circuit besides additional two power switches and one capacitor while the conventional current-fed half bridge converter has to be equipped with two clamp windings, two ZVS circuits, and two snubbers. Therefore, it can ensure the higher operating frequency, smaller-sized reactive components, lower cost of production, easier implementation, and higher efficiency. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200-W, 24-200Vdc prototype are presented.  相似文献   

6.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-voltage-switching PWM (ZVS-PWM) auxiliary circuit is configured in the presented ZVS-PWM rectifier to perform ZVS in the main switches and the passive switches, and zero-current switching in the auxiliary switch. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZVS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path, and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZVS-PWM rectifier in one switching period are described. A prototype rated at 1 kW, operating 80 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/ has been implemented in the laboratory. An efficiency of 96.7% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

7.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching (ZVS) in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved because of the following reasons: 1) the circulating current for the soft switching flows only through the auxiliary circuit; 2) a minimum number of switching devices are involved in the circulating current path; and 3) the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM-switch model is used to predict the system performance. A prototype rated at 1 kW, operating at 60 kHz, with an input alternating current voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/, has been implemented in laboratory. An efficiency of 98.3% and a power factor over 0.99 have been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

8.
A zero-voltage and zero-current switching three-level DC/DC converter   总被引:6,自引:0,他引:6  
This paper presents a novel zero-voltage and zero-current switching (ZVZCS) three-level DC/DC converter. This converter overcomes the drawbacks presented by the conventional zero-voltage switching (ZVS) three-level converter, such as high circulating energy, severe parasitic ringing on the rectifier diodes, and limited ZVS load range for the inner switches. The converter presented in this paper uses a phase-shift control with a flying capacitor in the primary side to achieve ZVS for the outer switches. Additionally, the converter uses an auxiliary circuit to reset the primary current during the freewheeling stage to achieve zero-current switching (ZCS) for the inner switches. The principle of operation and the DC characteristics of the new converter are analyzed and verified on a 6 kW, 100 kHz experimental prototype.  相似文献   

9.
This paper describes a simple and effective way to modify an existing hard-switched flyback power converter into a circuit with zero-voltage switching (ZVS) and zero-current switching (ZCS). The key improvement is to turn the unattractive features of the coupled inductor leakage inductance and snubber capacitor into attractive ones. The coupled inductor leakage inductance and snubber are used to form a quasi-resonant circuit to facilitate ZVS/ZCS of all power devices. The operating principles of the power converter and experimental results are presented  相似文献   

10.
The asymmetrical half-bridge (AHB) topology discussed in this paper is one of the complementary driven pulse-width modulated converter topologies, which presents an inherent zero-voltage switching (ZVS) capability. In the previous work, the ideal operation of the converter and the ZVS realization process have been analyzed. However, the influence of the circuit parasitics on the output voltage drop and the design constraints of the circuit parameters to ensure the ZVS operation have not been investigated. The minimum load needed to ensure the ZVS operation is also not readily available. This paper presents a detailed and practical design for a 1-MHz AHB converter. A revised voltage transfer ratio of the converter is derived considering the influence of circuit parasitics and the ZVS transition. Two circuit parameters responsible for maintaining the ZVS operation are the transformer leakage inductance and the interlock delay time between the gate signals of two switches. A design method of the two parameters is proposed, which can ensure the ZVS transition. The possible ZVS range of the load variation is also investigated. A 50-W AHB converter with 1-MHz switching frequency was constructed, and a maximum efficiency of 91% was achieved.  相似文献   

11.
The capacitive idling converters derived from the Cuk, SEPIC, Zeta, and flyback topologies allow soft commutation of power switches without the need for additional circuitry, making it possible to increase the switching frequency while maintaining high efficiency  相似文献   

12.
The system analysis, circuit design, and implementation of active clamp based forward converter with synchronous rectifier are presented in this paper. To release the energy stored in the leakage inductor and to minimize the spike voltage at the transformer primary side, active clamp circuit included one clamp switch and one clamp capacitor is adopted in the circuit. Based on the partial resonance with the output capacitor of switch and the leakage inductor of transformer, the main switch is turned on at zero voltage switching (ZVS). The clamp switch is also operated at ZVS operation based on the resonance of leakage inductor and clamp capacitor. The synchronous switches are used at the secondary side to further reduce the conduction losses. The experimental results based on the laboratory prototypes are presented to verify the circuit performance.  相似文献   

13.
14.
A new pulsewidth modulation (PWM)-controlled quasi-resonant converter for a high-efficiency plasma display panel (PDP) sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the primary resonant capacitor with a bidirectional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good zero-voltage switching (ZVS) capability, simple control circuits, no hign-voltage ringing problem of rectifier diodes, no dc offset of the magnetizing current and low-voltage stresses of power switches. Thus, the proposed converter shows higher efficiency than that of a half-bridge LLC resonant converter under light load condition. Although it shows the lower efficiency at heavy load, because of the increased power loss in auxiliary circuit, it still shows the high efficiency around 94%. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.   相似文献   

15.
为了提高逆变电路的转换效率,本文设计并给出了一种新型的零电压双极性窄脉冲产生电路。该逆变电路包含两个反激逆变电路部分,通过控制两反激逆变电路输出脉冲的相位差可以实现对前后两次放电时间间隔的调节。为了验证上述电路模型,设计并制作了基于12英寸介质阻挡放电平面光源的逆变电路。实验结果表明,该逆变电路可以实现零电压开关,因而提高了电路的转换效率,同传统双极性窄脉冲电路相比,其效率提高了约20%。  相似文献   

16.
A zero-voltage-switching (ZVS) DC/DC converter operating at constant frequency and having wide linearity is proposed. ZVS operation is achieved not only for the primary switches but also for the secondary rectifier diodes to reduce the switching stresses and losses. The converter overcomes other shortcomings of the conventional resonant DC/DC converters, among which are the high VA ratings of devices and passive components and load-dependent DC characteristics  相似文献   

17.
A ZCS bidirectional flyback DC/DC converter   总被引:2,自引:0,他引:2  
This paper addresses the design and analysis of a zero-current-switched (ZCS) bidirectional flyback dc/dc converter. The converter is based on extending a previously developed unidirectional ZCS flyback converter and replacing the output diode with a controlled switch, which acts as either a rectifier or a power control switch in the corresponding power flow direction. By adding an auxiliary winding in the coupled inductor, a switch, and a capacitor, the hard-switching design is converted into a soft-switching one. The technique utilizes the leakage inductance of the flyback coupled inductor to create zero-current-switching conditions for all switches in both power flow directions, leading to reduced switching losses, stresses, and electromagnetic interference. The operating principles of the converter and experimental results have been presented.  相似文献   

18.
This paper presents a new parallel three-level soft switching pulse-width modulation (PWM) converter. The proposed converter has two circuit cells operated by the interleaved PWM modulation. Thus, the ripple currents at input and output sides are reduced. Each circuit cell has two three-level zero voltage switching circuits sharing the same power switches. Therefore, the current and power rating of the secondary side components are reduced. Current double rectifier topology is selected on the secondary side to decrease output ripple current. The main advantages of the proposed converter are soft switching of power switches, low ripple current on the output side and low-voltage rating of power switches for medium-power applications. Finally, the performance of the proposed converter is verified by experiments with 1 kW prototype circuit.  相似文献   

19.
Unity power factor zero-voltage-switched (ZVS) AC-to-DC power converters with an active filter are proposed. The line voltage is supplied to AC-to-DC power converters through a rectifier circuit with an input filter, to reduce high-frequency ripple components. The line current is almost synchronized to the line voltage, due to the low impedance of the input filter. Forward ZVS multiresonant power converters (ZVS-MRCs) are utilized for high-frequency operation and lossless switching. An active filter is introduced to minimize the twice line-frequency ripple component of the output voltage without large-size passive filters. Experimental results show that the proposed scheme gives good steady-state performances of the AC-to-DC power converters  相似文献   

20.
This paper presents a bipolar narrow-pulse generator with energy-recovery feature for liquid-food sterilization. The generator is formed from a bidirectional flyback converter and active-clamp circuits which are further simplified to the proposed topology with the synchronous-switch technique. In the converter, the leakage inductance of the transformer will resonate with the active-clamp capacitors to recover the trapped energy and to reduce switching loss, improving efficiency by about 13%. In addition, the capacitors can reduce voltage stress significantly. Experimental results obtained from a prototype with the output of plusmn6-20 kV, depending on loads, and the peak power of 1.2 MW has confirmed these discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号