首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A uniform In0.05Ga0.95As ternary substrate was grown by using liquid encapsulated Czochralski (LEC) technique with a method of supplying GaAs source material at a constant temperature, and InGaAs/InGaAsP strained single quantum well (SQW) lasers were fabricated on the substrate for the first time. The lasers lased at 1.03 μm and exhibited low threshold current density of 222 A/cm2 and excellent characteristic temperature of 221 K, showing that the ternary substrate has a sufficient quality for laser fabrication  相似文献   

2.
Characterized herein are quantum-well Hall devices in Si-delta-doped Al0.25Ga0.75As/GaAs and pseudomorphic Al0.25Ga0.75As/In0.25Ga 0.75As/GaAs heterostructures, grown by low-pressure metal organic chemical vapor deposition method. The Si-delta-doping technique has been applied to quantum-well Hall devices for the first time. As a result high electron mobilities of 8100 cm-2/V·s with a sheet electron density of 1.5×1012 cm-2 in Al0.25Ga0.75As/In0.25Ga0.75 As/GaAs structure and of 6000 cm-2/V·s with the sheet electron density of 1.2×1012 cm-2 in Al0.25Ga0.75As/GaAs structure have been achieved at room temperature, respectively. From Hall devices in Al0.25Ga0.75As/In0.25Ga0.75 As structure, the product sensitivity of 420 V/AT with temperature coefficient of -0.015 %/K has been obtained. This temperature characteristic is one of the best result reported. Additionally, a high signal-to-noise ratio corresponding to the minimum detectable magnetic field of 45 nT at 1 kHz and 75 nT at 100 Hz has been attained. These resolutions are among the best reported results  相似文献   

3.
J. Ajayan  D. Nirmal 《半导体学报》2017,38(4):044001-6
In this work, the performance of Lg=22 nm In0.75Ga0.25As channel-based high electron mobility transistor (HEMT) on InP substrate is compared with metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. The devices features heavily doped In0.6Ga0.4As source/drain (S/D) regions, Si double δ-doping planar sheets on either side of the In0.75Ga0.25As channel layer to enhance the transconductance, and buried Pt metal gate technology for reducing short channel effects. The TCAD simulation results show that the InP HEMT performance is superior to GaAs MHEMT in terms of fT, fmax and transconductance (gm_max). The 22 nm InP HEMT shows an fT of 733 GHz and an fmax of 1340 GHz where as in GaAs MHEMT it is 644 GHz and 924 GHz, respectively. InGaAs channel-based HEMTs on InP/GaAs substrates are suitable for future sub-millimeter and millimeter wave applications.  相似文献   

4.
A new GaAs:Er buffer layer grown by MBE has been developed which significantly reduces backgating currents (by 3 to 4 orders of magnitude) in pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistors (MODFET's). The buffer layer is highly resistive, in the 10 2-105 Ω·cm range over the Er-doping range investigated. Presence of internal Schottky barriers resulting from high-density ErAs precipitates has been proposed to he the cause of the high resistivity  相似文献   

5.
An experimental study in which the quantum well width (W) is varied from 45 to 200 Å is discussed. Optimum device performance was observed at a well width of 120 Å. The 0.2-μm×130-μm devices with 120-Å quantum-well width typically exhibit a maximum channel current density of 550 mA/mm, peak transconductance of 550 mS/mm, and peak current gain cutoff frequency ( fT) of 122 GHz. These results have been further improved in subsequent fabrications employing a trilevel-resist mushroom-gate process. The 0.2-μm×50-μm devices with mushroom gate exhibit a peak transconductance of 640 mS/mm, peak f T of 100 GHz, and best power gains cutoff frequency in excess of 200 GHz. These results are among the best ever reported for GaAs-based FETs and are attributed to the high two-dimensional electron gas (2DEG) sheet density, good low-field mobility, low ohmic contact, and the optimized mushroom gate process  相似文献   

6.
New In0.4Al0.6As/In0.4Ga0.6 As metamorphic (MM) high electron mobility transistors (HEMTs) have been successfully fabricated on GaAs substrate with T-shaped gate lengths varying from 0.1 to 0.25 μm. The Schottky characteristics are a forward turn-on voltage of 0.7 V and a gate breakdown voltage of -10.5 V. These new MM-HEMTs exhibit typical drain currents of 600 mA/mm and extrinsic transconductance superior to 720 mS/mm. An extrinsic current cutoff frequency fT of 195 GHz is achieved with the 0.1-μm gate length device. These results are the first reported for In0.4 Al0.6As/In0.4Ga0.6As MM-HEMTs on GaAs substrate  相似文献   

7.
InP-based high electron mobility transistors (HEMTs) were fabricated by depositing Pt-based multilayer metallization on top of a 6-nm-thick InP etch stop layer and then applying a post-annealing process. The performances of the fabricated 55-nm-gate HEMTs before and after the post-annealing were characterized and were compared to investigate the effect of the penetration of Pt through the very thin InP etch stop layer. After annealing at 250 °C for 5 min, the extrinsic transconductance (Gm) was increased from 1.05 to 1.17 S/mm and Schottky barrier height was increased from 0.63 to 0.66 eV. The unity current gain cutoff frequency (fT) was increased from 351 to 408 GHz, and the maximum oscillation frequency (fmax) was increased from 225 to 260 GHz. These performance improvements can be attributed to penetration of the Pt through the 6-nm thick InP layer, and making contact on the InAlAs layer. The STEM image of the annealed device clearly shows that the Pt atoms contacted the InAlAs layer after penetrating through the InP layer.  相似文献   

8.
The DC current-voltage characteristics of strained In0.25 Ga0.75As/AlAs resonant tunneling diode (RTD) structures grown on GaAs (100) substrates which also include prepatterned mesas are discussed. The observed peak-to-valley current ratios (PVRs) of 4.5 at 300 K and 15 to 77 K with corresponding peak current densities of 11 and 13 kA/cm2 are the highest values of PVR to date for this strained system and are the same for the nonpatterned and prepatterned regions  相似文献   

9.
We report for the first time the successful epitaxial growth and processing of high-performance metamorphic high electron mobility transistors (HEMTs) on Ge substrates, with a transconductance of 700 mS/mm and a saturation channel current of 650 mA/mm. To reduce parasitic capacitances due to the conductive substrate, a dry etch method based on CF4 and O2 reactive ion etching (RIE) is developed for selective substrate removal. Devices with 0.2 μm gate length display an increase of the extrinsic cut-off frequency fT from 45 GHz before, to 75 GHz after substrate removal, whereas the maximum oscillation frequency fmax increases from 68 GHz to 95 GHz. Based on this excellent rf performance level, in combination with the highly selective thinning process, we think that Ge as a sacrificial substrate is a promising candidate for the integration of thinned individual HEMTs with passive circuitry on low-cost substrates. This could result in low-cost advanced hybrid systems for mass-market millimeter wave applications  相似文献   

10.
Si-delta-doped Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT's, prepared by LP-MOCVD, are investigated. The large conduction band discontinuity leads to 2-DEG density as high as 2.1×1012/cm2 with an electron mobility of 7300 cm2/V·s at 300 K. The P-HEMT's with 0.7×60 μm gate have a maximum extrinsic transconductance of 380 mS/mm, and a maximum current density of 300 mA/mm. The S-parameter measurements indicate that the current gain and power gain cutoff frequencies are 30 and 61 GHz, respectively, The RF noise characteristics exhibit a minimum noise figure of 1.2 dB with an associated gain of 10 dB at 10 GHz. Due to the efficient doping technique, the electron mobility and transconductance obtained are among the best reported for MOCVD grown P-HEMT's with the similar structure  相似文献   

11.
The authors report the DC and RF performance of nominally 0.2-μm-gate length atomic-planar doped pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As modulation-doped field-effect transistors (MODFETs) with fT over 120 GHz. The devices exhibit a maximum two-dimensional electron gas (2 DEG) sheet density of 2.4×1012 cm-2, peak transconductance g m of 530-570 mS/mm. maximum current density of 500-550 mA/mm, and peak current-gain cutoff frequency fT of 110-122 GHz. These results are claimed to be among the best ever reported for pseudomorphic AlGaAs/InGaAs MODFETs and are attributed to the high 2 DEG sheet density, rather than an enhanced saturation velocity, in the In0.25Ga0.75As channel  相似文献   

12.
In this paper, we present a flip-chip 80-nm In0.7Ga0.3As MHEMT device on an alumina (Al2O3) substrate with very little decay on device RF performance up to 60 GHz. After package, the device exhibited high IDS = 435 mA/mm at VDS = 1.5 V, high gm = 930 mS/mm at VDS = 1.3 V, the measured gain was 7.5 dB and the minimum noise figure (NFmin) was 2.5 dB at 60 GHz. As compared to the bare chip, the packaged device exhibited very small degradation in performance. The result shows that with proper design of the matching circuits and packaging materials, the flip-chip technology can be used for discrete low noise FET package up to millimeter-wave range.  相似文献   

13.
New In0.52Al0.48As/In0.53Ga0.47 As transferred-substrate high electron mobility transistors (TS-HEMTs) have been successfully fabricated on 2-in Silicon substrate with 0.12 μm T-shaped gate length. These new TS-HEMTs exhibit typical drain currents of 450 mA/mm and extrinsic transconductance up to 770 mS/mm. An extrinsic current gain cutoff frequency fT of 185 GHz is obtained. That result is the first reported for In0.52Al0.48As/In0.53Ga0.47 As TS-HEMTs on Silicon substrate  相似文献   

14.
Using strained aluminum-rich In0.45Al0.55As as Schottky contact materials to enhance the barrier height and indium-rich In0.75Ga0.25As as channel material to enhance the channel performance, we have developed InP-based enhancement-mode pseudomorphic InAlAs/InGaAs high electron mobility transistors (E-PHEMT's) with threshold voltage of about 170 mv. A maximum extrinsic transconductance of 675 mS/mm and output conductance of 15 mS/mm are measured respectively at room temperature for 1 μm-gate-length devices, with an associated maximum drain current density of 420 mA/mm at gate voltage of 0.9 V. The devices also show excellent rf performance with cutoff frequency of 55 GHz and maximum oscillation frequency of 62 GHz. To the best of the authors' knowledge, this is the first time that InP-based E-PHEMT's with strained InAlAs barrier layer have been demonstrated  相似文献   

15.
A set of physical constants for In0.53Ga0.47As as required for transport calculations is obtained by reviewing the literature. Velocities for fields up to 100 kV/cm, calculated by the Monte Carlo method using these constants, are presented for the temperatures of 95 and 300 K. The calculated values are found to be in good agreement with the available experimental results.  相似文献   

16.
The authors report the successful demonstration of a 1.0-μm gate InAlAs/InGaAs heterojunction FET (HFET) on top of thick InGaAs layers using lattice-matched molecular beam epitaxy (MBE). This scheme is compatible with metal-semiconductor-metal (MSM) photodetector fabrication. The authors measured the performance of InAlAs/InGaAs HFETs from 0 to 40 GHz. Device performance is characterized by peak extrinsic transconductances of 390 mS/mm and as-measured cutoff frequencies up to 30 GHz for a nominal 1.0-μm-gate-length HFET. HFET device measurements are compared for samples growth with and without the thick underlying InGaAs optical-detector absorbing layer  相似文献   

17.
利用新型的PMMA/PMGI/ZEP520/PMGI四层胶T形栅电子束光刻技术制备出120nm栅长InP基雁配In0.7Ga0.3As/In0.52Al0.48As 高电子迁移率晶体管。制作出的InP基HEMT器件获得了良好的直流和高频性能,跨导、饱和漏电流密度、阈值电压、电流增益截止频率和最大单向功率增益频率分别达到520 mS/mm, 446 mA/mm, -1.0 V, 141 GHz 及 120 GHz。文中的材料结构和所有器件制备均为本研究小组自主研究开发。  相似文献   

18.
建立了SACM型In0.53Ga0.47As/In0.52Al0.48As雪崩光电二极管(APD)的分析模型,通过数值研究和理论分析设计出高性能的In0.53Ga0.47As/In0.52Al0.48As APD。器件设计中,一方面添加了In0.52Al0.48As势垒层来阻挡接触层的少数载流子的扩散,进而减小暗电流的产生;另一方面,雪崩倍增区采用双层掺杂结构设计,优化了器件倍增区的电场梯度分布。最后,利用ATLAS软件较系统地研究并分析了雪崩倍增层、电荷层以及吸收层的掺杂水平和厚度对器件电场分布、击穿电压、IV特性和直流增益的影响。优化后APD的单位增益可以达到0.9 A/W,在工作电压(0.9 Vb)下增益为23.4,工作暗电流也仅是纳安级别(@0.9 Vb)。由于In0.52Al0.48As材料的电子与空穴的碰撞离化率比InP材料的差异更大,因此器件的噪声因子也较低。  相似文献   

19.
Al0.25Ga0.75As/GaAs quantum well delta-doped channel FETs (QWDFETs) have been successfully fabricated by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The FETs with a gate dimension of 1.8 μm×100 μm had a maximum extrinsic transconductance of 190 mS/mm and a maximum current density of 425 mA/mm. The device showed extremely broad transconductances around its peak. The S-parameter measurements indicated that the current gain and power gain cutoff frequencies of the device were 7 and 15 GHz, respectively. The transconductance versus gate voltage profiles showed a plateau region through a range of 1.7 V supporting spatial confinement of the electrons. These values are among the best reported for delta-doped GaAs-based FETs with a similar device geometry  相似文献   

20.
The first InGaAs/InP charge-coupled device (CCD) is demonstrated, exhibiting a charge transfer efficiency (CTE) of 0.98 at 13 MHz and 1 GHz. Cooling the device improves the CTE to greater than 0.99 at 13-MHz clock frequency. The 0.76-eV In0.53Ga0.47As bandgap makes this structure applicable to direct-detection short-wavelength infrared (SWIR) imagers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号