首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电学方法研究掺有窑灰水泥的水化特性   总被引:4,自引:0,他引:4  
利用非接触式电阻率新方法,研究普通硅酸盐水泥及粉煤灰和粉磨时间分别为1h、3h和4h的窑灰混掺后胶凝材料的水化特性.试验结果表明,窑灰分别粉磨1h、3h和4h后,在同样掺量情况下,对水泥浆体早期电阻率随时间的变化有明显的影响.高碱度和高Cl-、高SO3含量将直接影响到窑灰作为混合材或直接回窑后水泥的早期水化特性.不同掺量的粉煤灰在一定程度上可以平衡窑灰水泥浆体系中的碱,同时窑灰中的碱也可激发粉煤灰的早期活性,在熟料掺量小于50%时仍可获得较高的早期强度.  相似文献   

2.
Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, (27)Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud.  相似文献   

3.
This work describes the utilization of rice hull as raw-material for the preparation of two calcium silicates namely, β-Ca1.91Ba0.04SiO4 and β-Ca1.96Ba0.04SiO4. The synthesis was completed at 800°C. Hydration rate and compressive strength of mortars prepared with the two calcium silicates were studied and compared to mortars prepared with commercial Portland cement. Hydration rates for both silicates, studied by thermogravimetric and FTIR analysis are very similar; after 60 days the hydration rates are around 42–43% and reaches 75% after 270 days. Compressive strength experiments were performed using test specimen prepared with commercial Portland cement as reference, and blends of Portland cement and the two calcium silicates, at replacement levels of 10 and 20%. Results have shown that after a 90 days curing period, the compressive strength of the reference and the blends containing 10% of each of the calcium silicates show the same behavior. Using a replacement level of 20% there is a small decrease in compressive strength. This behavior is attributed to the lower hydration rate of these calcium silicates.  相似文献   

4.
To clarify the strength improvement mechanism of gap-graded blended cements with a high amount of supplementary cementitious materials, phase composition of hardened gap-graded blended cement pastes was quantified, and compared with those of Portland cement paste and reference blended cement (prepared by co-grinding) paste. The results show that the gap-graded blended cement pastes containing only 25% cement clinker by mass have comparable amount of gel products and porosity with Portland cement paste at all tested ages. For gap-graded blended cement pastes, about 40% of the total gel products can be attributed to the hydration of fine blast furnace slag, and the main un-hydrated component is coarse fly ash, corresponding to un-hydrated cement clinker in Portland cement paste. Further, pore size refinement is much more pronounced in gap-graded blended cement pastes, attributing to high initial packing density of cement paste (grain size refinement) and significant hydration of BFS.  相似文献   

5.
Steel slag has been used as supplementary cementitious materials or aggregates in concrete. However, the substitution levels of steel slag for Portland cement or natural aggregates were limited due to its low hydraulic property or latent volume instability. In this study, 60% of steel slag powders containing high free-CaO content, 20% of Portland cement and up to 20% of reactive magnesia and lime were mixed to prepare the binding blends. The binding blends were then used to cast concrete, in which up to 100% of natural aggregates (limestone and river sands) were replaced with steel slag aggregates. The concrete was exposed to carbonation curing with a concentration of 99.9% CO2 and a pressure of 0.10 MPa for different durations (1d, 3d, and 14d). The carbonation front, carbonate products, compressive strength, microstructure, and volume stability of the concrete were investigated. Results show that the compressive strength of the steel slag concrete after CO2 curing was significantly increased. The compressive strengths of concrete subjected to CO2 curing for 14d were up to five-fold greater than that of the corresponding concrete under conventional moist curing for 28d. This is attributed to the formation of calcium carbonates, leading to a microstructure densification of the concrete. Replacement of limestone and sand aggregates with steel slag aggregates also increased the compressive strengths of the concrete subjected to CO2 curing. In addition, the concrete pre-exposed to CO2 curing produced less expansion than the concrete pre-exposed to moist curing during the subsequent accelerated curing in 60 °C water. This study provides a potential approach to prepare concrete with low-carbon emissions via the accelerated carbonation of steel slag.  相似文献   

6.
The hydrothermal reactivity of silica sand was studied using cement kiln dust (CKD) as an activator in addition to the portland cement fraction of El-Karnak cement (a blend of ordinary Portland cement and ground sand).Autoclaved El-Karnak cement pastes were studied at pressures of 0.507,1.013 and 01.520 MPa of saturated steam with respect to their compressive strength,kinetics of hydrothermal reaction and the phase composition of the formed hydrates.The role of CKD in affecting the physicochemical and mechanical properties of El-Karnak cement pastes was studied by autoclaving of several pastes containing 5,7.5,10 and 20% CKD at a pressure of 1.013 MPa of saturated steam.CKD was added either as a raw CKD (unwashed) or after washing with water (washed CKD).The results of these physicochemical studies obtained could be related as much as possible to the role of CKD (raw or washed) in affecting the hydrothermal reactivity of silica sand in El-Karnak cement pastes.  相似文献   

7.
In this study the hydration of quaternary Portland cements containing blast-furnace slag, type V fly ash and limestone and the relationship between the types and contents of supplementary cementitious materials and the hydrate assemblage were investigated at ages of up to 182 days using X-ray diffraction and thermogravimetric analysis. In addition thermodynamic modeling was used to calculate the total volume of hydrates. Two blast-furnace slag contents of 20 and 30 wt.% were studied in blends containing fly ash and/or limestone at a cement replacement of 50 wt.%. In all cases the experiments showed the presence of C–S–H, portlandite and ettringite. In samples without limestone, monosulfate was formed; in the presence of limestone monocarbonate was present instead. The addition of 5 wt.% of limestone resulted in a higher compressive strength after 28 days than observed for cements with lower or higher limestone content. Overall the presence of fly ash exerts little influence on the hydrate assemblage. The strength development reveals that amounts of up to 30 wt.% fly ash can be used in quaternary cements without significant loss in compressive strength.  相似文献   

8.
Ground granulated blast furnace slag, which shows cementitious behavior (latent hydraulic activity) and pozzolanic characteristics (reaction with lime), has been widely used as a mineral admixture in normal and high strength concretes. Hydration of slag–blended cement is much more complex than that of ordinary Portland cement because of the mutual interactions between the cement hydration and the slag reaction. This paper presents a kinetic hydration model for cement–slag blends. The proposed model analyzes the slag reaction separate from cement hydration by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. The amount of free water and the amount of calcium hydroxide left in the system were adopted as the control indicators for determining the slag reaction. Using the proposed model, the reaction ratio of slag can be evaluated as a function of curing age, considering the influences of the water to binder ratio, the slag replacement ratio and the curing temperature. Furthermore, the amount of chemically-bound water (self-cementing properties), calcium hydroxide (pozzolanic capabilities), and the heat released from hydration are evaluated by determining the contributions from both the cement hydration and the slag reaction. The evaluated results show good accordance with the experimental results.  相似文献   

9.
High-calcium fly ashes (ASTM Class C) are being widely used as a replacement of cement in normal and high strength concrete. In Greece such fly ashes represent the majority of the industrial by-products that possess pozzolanic properties. Even thought the contribution of factors, such as fineness and water/binder ratio, on the performance of fly ash/cement (FC) systems has been a common research topic, little work has been done on examining whether and to what extent reactive silica of fly ashes affects the mechanisms occurring during their hydration.The work presented herein describes a laboratory scale study on the influence of active silica of two high-lime fly ashes on their behavior during hydration. Volumes up to 30% of Greek high-calcium fly ashes, diversified both on their reactive silica content and silicon/calcium oxides ratio, were used to prepare mixes with Portland cement. The new blends were examined in terms of compressive strength, remaining calcium hydroxide, generation of hydration products and microstructural development. It was found that soluble silica of fly ashes holds a predominant role especially after the first month of the hardening process. At this stage, silica is increasingly dissolved in the matrix forming additional cementitious compounds with binding properties, principally a second generation C–S–H. The rate however, that fly ashes react in FC systems seems to be independent of their active silica content, indicating that additional factors such as glass content and fineness should be taken into account for predicting the contribution of fly ashes in the final performance of pozzolanic cementitious systems.  相似文献   

10.
29Si{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy is a powerful and reliable tool for the quantification of thaumasite in cement-based materials. The most efficient method for quantifying thaumasite from 29Si{1H} CP/MAS NMR spectra is described and it is shown that the method allows detection of thaumasite contents below approximately 10 wt.% with a relative precision of 15% and contents above 10 wt.% with a relative precision of 10%. The applicability of 29Si{1H} CP/MAS NMR for quantification of thaumasite is demonstrated for different Portland cement pastes and shows that thaumasite contents as low as 0.2–0.5 wt.% can be detected in cementitious systems with low concentrations of paramagnetic impurities. For a Portland cement containing various amounts of limestone dust and stored at 5 °C in a MgSO4 solution, large quantities of thaumasite have been detected. Furthermore, the quantity of thaumasite is found to be less sensitive to the amount of added limestone dust. For samples of a Portland cement with a fixed content of limestone dust but different quantities of added gypsum, the increased contents of gypsum are observed to result in larger quantities of thaumasite after prolonged hydration.  相似文献   

11.
This study aims at investigating the possibility of using dust, collected in air filters during the melting of mineral wool raw materials (mineral wool cupola dust) as an additive for Portland cement. It was found that the investigated dust mainly consists of quartz, periclase, albite, dolomite, and the amorphous phase. The main impurities are halite and sylvite. The investigated additive was additionally milled and prepared as a microfiller. The results showed that the cupola dust additive increases the initial hydration of cement, yet prolongs the dormant period. It was estimated that up to 15 wt% of Portland cement can be replaced by the dust additive without impairing the strength properties of samples after 28 days of hardening. However, after 90 days of hydration, the compressive strength of all samples with the investigated additive is lower than in pure OPC samples. This phenomenon is concerned with the formation of a significant amount of Friedel's salt. The content of chlorides in the raw material was reduced from 4.901 to 0.612 wt% by washing with water, when the water-to-solid ratio was equal to 10. The results of the investigation showed that the washed and ground cupola dust had a positive effect on the compressive strength of the cement samples. When 5, 10, and 15 wt% of prepared dust additive were used, the compressive strength of samples after 28 and 90 days of hydration was greater than that of pure Portland cement sample. The findings suggest that the additionally prepared dust additive leads to the formation of a stable structure of the cement stone, accelerates the calcium silicates hydration, and promotes the formation of gismondine.  相似文献   

12.
Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy and causes less CO2 emission than Portland cement. Moreover, the use of limestone powder and BFS improves the properties of fresh and hardened concrete, such as workability and durability. Engineered cementitious composites (ECC) is a class of ultra ductile fiber reinforced cementitious composites, characterized by high ductility, tight crack width control and relatively low fiber content. The limestone powder and BFS are used to produce ECC in this research. The mix proportion is designed experimentally by adjusting the amount of limestone powder and BFS, accompanied by four-point bending test and uniaxial tensile test. This study results in an ECC mix proportion with the Portland cement content as low as 15% of powder by weight. This mixture, at 28 days, exhibits a high tensile strain capacity of 3.3%, a tight crack width of 57 μm and a moderate compressive strength of 38 MPa. In order to promote a wide use of ECC, it was tried to simplify the mixing of ECC with only two matrix materials, i.e. BFS cement and limestone powder, instead of three matrix materials. By replacing Portland cement and BFS in the aforementioned ECC mixture with BFS cement, the ECC with BFS cement and limestone powder exhibits a tensile strain capacity of 3.1%, a crack width of 76 μm and a compressive strength of 40 MPa after 28 days of curing.  相似文献   

13.
To achieve sustainable development of cement industry, cementitious efficiency of different cement clinker and supplementary cementitious materials (SCMs) fractions, in terms of hydration process and strength contribution ratio, was characterized. The results show that blast furnace slag and steel slag should preferably be arranged in fine fractions due to their desirable hydration processes and high strength contribution ratios. Cement clinker should be positioned in intermediate fraction (8–24 μm) due to its proper hydration process. Replacement of cement clinker by SCMs with low activity or inert fillers in coarse fractions was also suggested, because coarse cement clinker fractions gave very low hydration degrees and little strength contribution. Both early and late properties of gap-graded blended cements prepared can be comparable with or higher than those of Portland cement, indicating both cement clinker and SCMs were used more efficiently. These blended cements also give additional cost savings and reduced environmental impact.  相似文献   

14.
Compressive strength developed by concretes containing fly ash up to 80% of the cementitious fraction is presented. The effects of mix design technique, quantity of cement in the mix and the curing period on the strength development of fly ash concrete are also included. A comparison of the rate of strength development of the control and fly ash concretes is also provided. It is concluded that the optimum level of replacement of cement by fly ash depends on the actual amount of cement in the mix.  相似文献   

15.
This paper presents a laboratory scale simulation that aims to investigate the possibility of partially substituting ordinary cement raw mix with waste ammunition materials (WAM), originated from a shooting range in Athens, Greece, in Portland cement clinker production. One reference and twelve modified mixtures, containing 0.5%, 1.0%, 1.5% and 2.0% w/w of three blends of corresponding types of waste ammunition materials, were examined. It was concluded that the three used WAM blends, improve remarkably the burnability of the cement raw mixture, even though in a different extent, without affecting considerably the hydration rate and the cement properties. In spite of the high volatile matter in the WAM, primarily due to high levels of lead present, incorporation degree of the heavy metals present in the WAM blends in the mineralogical clinker compounds was rather high during the sintering process. Leaching tests showed that the heavy metal concentrations in the leachates were kept low.  相似文献   

16.
Calcium carbide residue (CCR) is a by-product of the acetylene gas production and bagasse ash (BA) is a by-product obtained from the burning of bagasse for electricity generation in the sugar industry. The mixture between CCR contains a high proportion of calcium hydroxide, while BA is a pozzolanic material, can produce a pozzolanic reaction, resulting in the products similar to those obtained from the cement hydration process. Thus, it is possible to use a mixture of CCR and BA as a cementitious material to substitute for Portland cement in concrete. The results indicated that concrete made with CCR and BA mixtures and containing 90 kg/m3 of Portland cement gave the compressive strength of 32.7 MPa at 28 days. These results suggested that the use of ground CCR and ground BA mixtures as a binder could reduce Portland cement consumption by up to 70% compared to conventional concrete that requires 300 kg/m3 of Portland cement to achieve the same compressive strength. In addition, the mechanical properties of the alternative concrete including compressive strength, splitting tensile strength, and elastic modulus were similar to that of conventional concrete.  相似文献   

17.
In this study, a new approach to characterize hardened pastes of pure portland cement as well as those containing cement with supplementary cementitious materials (SCM) was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra (EDS) microanalyses. The volume stoichiometry of the hydration reactions was used to estimate the quantities of the primary and secondary calcium silicate hydrate (C-S-H) and the calcium hydroxide produced by these reactions. The 3D plots of Si/Ca, Al/Ca and S/Ca atom ratios given by the microanalyses were compared with the estimated quantities of C-S-H to successfully determine the Ca/Si ratio of eleven different cementitious systems at four different ages using a constrained nonlinear least squares optimization formulation by General Algebraic Modeling System (GAMS). The estimated mass fraction of calcium hydroxide from the above method agreed well with the calcium hydroxide content determined from the thermogravimetric analyses (TGA).  相似文献   

18.
《Materials Letters》2004,58(3-4):425-427
The purpose of the letter is to explore an effective way to substantially utilize by-product of cement production by developing an environmentally friendly, sufficiently performing, and cost-effective cementitious product for future concrete materials. The study involves properly blending fly ash with cement kiln dust to create a cementitious material in which the material deficiencies will be converted into benefits. The activation process chosen, in order to facilitate and enhance hydration of the two materials, is mechanical grinding. Properties are determined through the use of heat of hydration test, particle size test and compressive test. The results show that such a material is feasible with additional study.  相似文献   

19.
Pozzolans play an important role when added to Portland cement because they usually increase the mechanical strength and durability of concrete structures. The most important effects in the cementitious paste microstructure are changes in pore structure produced by the reduction in the grain size caused by the pozzolanic reactions pozzolanic effect (PE) and the obstruction of pores and voids by the action of the finer grains (physical or filler effect). Few published investigations quantify these two effects. Twelve concrete mixtures were tested in this study: one with Portland cement (control), nine mixtures with 12.5%, 25% and 50% of replacement of cement by fly ash, rice husk ash and limestone filler; two with (12.5+12.5)% and (25+25)% of fly ash and rice husk ash. All the mixtures were prepared with water/binder ratios of 0.35, 0.50, and 0.65. The compressive strength for the samples was calculated in MPa per kg of cement. The remaining contents of calcium hydroxide and combined water were also tested. The results show that the pozzolanic and physical effects have increased as the mineral addition increased in the mixture, being higher after 91 days than after 28 days. When the results for the same strength values are compared (35 and 65 MPa), it was observed that the filler effect (FE) increased more than the pozzolanic effect. The PE was stronger in the binary and ternary mixtures prepared with rice husk ash in proportions of 25% or higher.  相似文献   

20.
针对不同品种水泥基材料在高温下体积稳定性问题,采用差示热膨胀仪对普通硅酸盐水泥、高铝水泥和硫铝酸盐水泥分别制成的水泥石的热膨胀性能进行了测试,并用DTA/TG对影响水泥石高温热性能的原因和机制进行了分析。结果表明:3种水泥石的热膨胀率均随着温度的升高先增加后显著降低,到达一定温度后趋于稳定。分析热膨胀随温度变化的规律获知,3种水泥在高温状态下应用时,高铝水泥体积稳定性最佳、硫铝酸盐水泥次之、普通硅酸盐水泥石最差。水泥石的热膨胀均是由其固相组分的受热膨胀与主要水化产物的脱水收缩共同作用的结果,而水泥品种不同,其水化产物中主要脱水组分截然不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号