共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
3.
限制基于上下文的二进制算术解码(CABAD)速度的几个主要环节入手,提出了优化的上下文存储模式,改进的重归一化单元,并使用流水线提高解码速度.在Synopsys公司的CoCentric System Studio平台进行了二进制算术解码器体系结构设计,仿真结果表明,本结构能够满足主要档次(main profile)CIF 30fps的实时解码的要求. 相似文献
4.
为了提高CAVLC解码器的解码速率,提出了一种优化的CAVLC解码器结构,主要包括level解码模块和RunBefore解码模块。level解码模块采用伪并行的结构解码幅值,实现了半个周期解码一个幅值;采用RunBefore与level快速合并的方法,在RunBefore解码完成的同时形成残差系数。建立了该优化结构的RTL模型,并验证了其功能的正确性。利用Xilinx公司的ISE13.3对该设计进行综合,结果显示该设计可以支持1 080 p高清视频的实时解码。 相似文献
5.
6.
7.
8.
9.
基于H.264解码中CAVLC的优化 总被引:1,自引:0,他引:1
文章介绍了视频编解码标准H.264解码器的解码流程,并分析了解码器中的熵编码原理与过程.针对解码过程中所查码表的特点,提出了把码表适当分块来缩小其查表范围的优化方法。从而提高解码器在熵编码过程中的解码速度,以满足实时性的要求。 相似文献
10.
11.
In this paper, we propose hardware architecture for a high‐speed context‐adaptive variable length coding (CAVLC) decoder in H.264. In the CAVLC decoder, the codeword length of the current decoding block is used to determine the next input bitstreams (valid bits). Since the computation of valid bits increases the total processing time of CAVLC, we propose two techniques to reduce processing time: one is to reduce the number of decoding steps by introducing a lookup table, and the other is to reduce cycles for calculating the valid bits. The proposed CAVLC decoder can decode 1920×1088 30 fps video in real time at a 30.8 MHz clock. 相似文献
12.
13.
14.
This paper proposes a novel cost-effective and programmable architecture of CAVLC decoder for H.264/AVC, including decoders
for Coeff_token, T1_sign, Level, Total_zeros and Run_before. To simplify the hardware architecture and provide programmability,
we propose four new techniques: a new group-based VLD with efficient memory (NG–VLDEM) for Coeff_token decoder, a novel combined
architecture (NCA) for level decoder, a new group-based VLD with memory access once (GMAO) for Total_zeros decoder and a new
VLD architecture based on multiplexers instead of searching memory (MISM) for Run_before decoder. With the above four techniques,
the proposed CAVLC decoder can decode every syntax element within one clock cycle. Synthesis result shows that the hardware
cost is 3,310 gates with 0.18 μm CMOS technology at a clock constrain of 125 MHz. Therefore, the proposed design is satisfied
for real-time applications, such as H.264/AVC HD1080i video decoding.
相似文献
Shunliang MeiEmail: |
15.
对H.264/AVC和AVS的宏观算法和局部异同点进行了分析,提出了基于H.264/AVC和AVS的视频解码器芯片系统结构,以满足高处理能力和高吞吐量的要求.在此结构中,将混合视频编码框架分为5个处理核,各处理核通过不同参数的设置来实现相应标准的处理过程,实现硬件的可重用.采用多级混合的流水线结构,充分利用视频处理任务级的并行性,提高处理的吞吐量.采用3级的存储器系统结构,并对存储器结构的3个层次分别进行优化,有效提高了数据访问的效率核并行度. 相似文献
16.
17.