首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
糠醛渣纤维乙醇同步糖化发酵过程研究   总被引:5,自引:1,他引:4  
以过碱化处理的糠醛渣为原料,采用正交试验法进行同步糖化发酵(SSF)转化乙醇工艺条件及过程研究.通过考察反应温度、pH、纤维素酶用量和表面活性剂浓度来优化同步糖化发酵转化工艺条件.在正交优化条件基础上,进行了5 L发酵罐试验,并同步分析表征了发酵过程中还原糖浓度、乙醇浓度、酵母细胞数、纤维素含量及其结构变化.同步糖化发酵转化糠醛渣生成乙醇的优化条件为:反应温度38℃,pH 4.2,纤维素酶用量20 FPU/(g纤维素),吐温-20质量分数0.15%,酵母接种量10%.发酵罐中同步糖化发酵糠醛渣生成乙醇的转化率达到72.33%,过程分析表明反应时间为27 h时,糠醛渣糖化发酵产乙醇的转化率达到最高,比其他纤维原料的反应转化时间大大缩短.同步糖化发酵过程中,糠醛渣纤维素含量逐步降低,纤维索表观结晶度呈下降趋势,纤维素微晶尺寸减小.  相似文献   

2.
王欲晓  庄文昌 《广东化工》2012,39(2):258-260
利用正交试验在中试水平考察了玉米芯的稀硫酸预处理和分步糖化与水解生产乙醇的工艺。结果:最佳预处理工艺为稀硫酸浓度1.1%,温度120℃,固液比1∶8,时间3 h;酶解糖化最佳工艺为:起始底物浓度180 g/L,滤纸酶活:纤维二糖酶活=20 IU/g底物:7 IU/g底物,pH=5.0,48 h;利用运动发酵单胞菌发酵酶解液,35℃,48 h,发酵液中乙醇浓度最高67.8 g/L。  相似文献   

3.
以糠醛渣为原料,直接同步糖化发酵(SSF)生产乙醇,并与水洗糠醛渣生产乙醇进行对比。通过考察不同条件来优化同步糖化发酵生产工艺条件,并分析表征了SSF过程中乙醇浓度和副产物浓度变化。优化条件为:糠醛渣底物质量分数10%,纤维素酶用量12%,无患子皂素质量浓度0.5g/L,酵母接种量7g/L,同步糖化发酵乙醇得率达到其理论得率的93.1%。与水洗糠醛渣相比,糠醛渣直接SSF过程可将原料吸附的5.50%葡萄糖部分转化为乙醇。水洗糠醛渣SSF生产乙醇所产生的副产物要远低于糠醛渣直接生产所产生的副产物,添加无患子皂素可有效抑制糠醛渣同步糖化发酵过程中副产物的产生。  相似文献   

4.
表面活性剂对麦草同步糖化发酵转化乙醇的影响   总被引:2,自引:0,他引:2  
罗鹏  刘忠 《过程工程学报》2009,9(2):355-359
研究了5种非离子型表面活性剂(BSA, Tween-20, Tween-80, PEG-4000, PEG-6000)促进麦草同步糖化发酵的效果. 结果表明,5种表面活性剂均能促进麦草同步糖化发酵,以Tween-20效果最为显著. 反应体系中添加Tween-20可降低酶用量而保持乙醇浓度基本相同. 在pH 5.0、温度37℃、底物浓度50 g/L及Celluclast 1.5 l用量25 FPU/g、Novozym 188用量15 IU/g的反应体系中,添加0.03 g/g Tween-20,反应72 h,乙醇浓度达到18.7 g/L,比未添加表面活性剂的体系提高了14.0%,反应时间缩短了12 h.  相似文献   

5.
采用正交实验对玉米芯在2%HNO3/HCl中的水解条件进行优化,得出最适宜的预处理条件为:反应温度120℃,反应时间30 min,固含量15%。将经过预处理的玉米芯作为同步糖化发酵的底物,采用单因素实验考查影响发酵的因素,结果表明:在底物浓度为150 g/L、37℃、pH值为5.0、纤维素酶用量为30 FPU/g底物、酵母接种量10%、发酵周期72 h时,乙醇的产率可达到76.8%,此时乙醇溶液的浓度为41.4 g/L。  相似文献   

6.
利用Trichoderma sp.W2所产的嗜温耐乙醇β-葡萄糖苷酶及耐高温酵母Kluyveromyces marxianus NCYC 587,以气爆秸秆为原料进行高温同步糖化发酵。研究结果表明:在42℃条件下,接种体积分数10%,底物质量分数15%,发酵pH值为4.8,β-葡萄糖苷酶添加量为30 U/g底物条件下发酵效果最好。NCYC 587能迅速利用预水解产生的葡萄糖发酵并积累乙醇,同时能利用部分木糖,但在发酵后期,葡萄糖利用完全后会代谢利用一定量的乙醇,致使发酵过程中乙醇质量浓度始终维持在一个相对较低的水平。乙醇最高质量浓度达到20.56 g/L,乙醇产率达80.64%。添加嗜温耐乙醇β-葡萄糖苷酶于高温同步糖化发酵能有效解决纤维素酶解发酵过程终端产物抑制的难题。  相似文献   

7.
研究了利用木薯酒精厂废渣为原料发酵生产乙醇的方法,结果表明:经过简单的机械粉碎后,通过同步糖化发酵生产乙醇是可行的。发酵条件为:木薯酒精渣经粉碎后取粒径小于0.85mm的部分,初始料水比1∶8,纤维素酶添加量为每克木薯渣(干重)30FPU,发酵过程中在24h内分批将剩余木薯渣加入至总料水比达到1∶2.5,利用5L发酵罐进行同步糖化发酵,发酵液中乙醇质量浓度达到52g/L,木薯酒精渣到乙醇的收率达到13%。纤维素酶的添加量对发酵效果影响显著,当达到每克木薯渣(干重)50FPU时,发酵液中乙醇质量浓度可达65g/L,乙醇收率达到16%。  相似文献   

8.
自絮凝颗粒酵母发酵菊芋汁生产乙醇   总被引:3,自引:0,他引:3  
分别采用分批和连续发酵方式,对自絮凝颗粒酵母Saccharomyces cerevisiae flo发酵菊芋汁生产乙醇的条件进行了优化. 与先酶解菊芋汁后再用自絮凝酵母发酵的分步糖化发酵相比,分批发酵过程中同时加入菊粉酶和自絮凝酵母的同步糖化发酵乙醇得率高,发酵时间短. 当菊芋汁总糖浓度分别为105和179 g/L时,同步糖化发酵的最高乙醇浓度达50和82.5 g/L,比分步糖化发酵高6.4%和13.8%. 在连续发酵过程中应用同步糖化发酵法,当稀释率为0.02 h-1时,乙醇浓度约为90 g/L时达到稳定状态,乙醇得率达到理论值的90%,生产强度达2.12 g/(L×h).  相似文献   

9.
牛友芽  高玉妹  倪俊 《广东化工》2012,(4):87-88,90
采用纤维素酶、果胶酶和β-葡萄糖苷酶对冰糖橙皮渣进行水解,所得还原糖液接种异常毕赤酵母进行发酵,考察了酵母接种量、发酵时间、pH和发酵温度等单因素对乙醇得率的影响。单因素结果表明:接种量为12%、发酵时间72 h、pH 4.5、发酵温度33℃时乙醇得率最高。在此基础上设计L9(34)正交实验。结果表明,最佳工艺条件为pH 4.5,接种量12%,发酵时间72 h,发酵温度30℃。在此条件下乙醇产率为0.2451 g/g,显著高于单因素实验(0.2263 g/g)和正交实验结果(0.2329 g/g)。  相似文献   

10.
菊芋作为一种非粮作物,块茎和秸秆均可以被微生物发酵生成乙醇。采用稀酸法对菊芋秸秆进行预处理,通过单因素实验,考察了预处理温度、预处理时间、稀酸浓度、料液比4个因素,得到的优化结果:料液比为1∶8,酸解温度为121℃,酸质量分数为1.5%,酸解时间为1 h。此条件下水解菊芋秸秆,还原糖得率高达53.7%;预处理后的水解液在添加纤维素酶和木聚糖酶后,考察Kluyveromyces marxianus 1727的乙醇发酵能力,其同步糖化发酵与分步糖化发酵乙醇产量分别为25.91 g/L和25.63 g/L,生产效率分别是0.54 g/L/h和0.26 g/L/h。结果表明,稀酸水解的菊芋秸秆可用作底物生产燃料乙醇。  相似文献   

11.
Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and ?-glucosidase Novozym 188) were adopted in combination with the yeast Saccharomyces cerevisiae AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L-1; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g-1. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L-1.  相似文献   

12.
Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and β-glucosidase Novozym 188) were adopted in combination with the yeast Saccharomyces cerevisiae AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L−1; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g−1. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L−1. __________ Translated from Chemical Engineering (China), 2007, 35(12): 42–45 [译自: 化学工程]  相似文献   

13.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

14.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

15.
Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting Aspergillus niger and nonstarch digesting and sugar fermenting Kluyveromyces marxianus in batch fermentation. Experiments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65°C and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30°C and 5.5, respectively. The wheat bran flour solution equivalent to 6% (w/V) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermentation of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus A. niger and nonamylolytic sugar fermenting K. marxianus.  相似文献   

16.
Cellulose rich barley straw, which has a glucan content of 62.5%, followed by dilute acid pretreatment, was converted to bioethanol by simultaneous saccharification and fermentation (SSF). The optimum fractionation conditions for barley straw were an acid concentration of 1% (w/v), a reaction temperature of 158 °C and a reaction time of 15 min. The maximum saccharification of glucan in the fractionated barley straw was 70.8% in 72 h at 60 FPU/gglucan, while the maximum digestibility of the untreated straw was only 18.9%. With 6% content WIS (water insoluble solid) for the fractionated barley straw, 70.5 and 83.2% of the saccharification yield were in SHF and SSF (representing with glucose equivalent), respectively, and a final ethanol concentration of 18.46 g/L was obtained under the optimized SSF conditions: 34 °C with 15 FPU/g-glucan enzyme loading and 1 g dry yeast cells/L. The results demonstrate that the SSF process is more effective than SHF for bioethanol production by around 18%.  相似文献   

17.
Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting Aspergillus niger and nonstarch digesting and sugar fermenting Kluyveromyces marxianus in batch fermentation. Experiments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65°C and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30°C and 5.5, respectively. The wheat bran flour solution equivalent to 6% (w/V) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermentation of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus A. niger and nonamylolytic sugar fermenting K. marxianus.  相似文献   

18.
高底物浓度纤维乙醇同步糖化发酵工艺的比较   总被引:1,自引:0,他引:1  
常春  王铎  王林风  马晓建 《化工学报》2012,63(3):935-940
引言日益加剧的能源危机和环境污染,正迫使人们寻求新的可再生替代能源。纤维乙醇作为一种重要的生物质替代能源,经过近40多年的发展,已经具备了实现工业化生产的潜力。为了进一步降低纤  相似文献   

19.
Solid content in the simultaneous saccharification and fermentation (SSF) broth should be as high as possible in order to reach higher ethanol concentration. In this work, several feeding strategies for ethanol production from steam-exploded wheat straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations. Previous fermentability tests as well as SSF processes showed the difficulty of using the slurry for ethanol production under the studied conditions. Notwithstanding, fed-batch SSF processes with water-insoluble solids (WIS) fraction resulted in better configuration, reaching the highest ethanol concentration (36.2 g/L) with an initial WIS content of 10% (w/v) and 4% (w/v) of substrate addition at 12 h, which meant 20% more ethanol when compared with batch SSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号