首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
As a hot fabrication technology for micro scale parts, micro injection molding is receiving increasing market attention. Improving mechanical properties of micro parts should be an important issue in the micro injection molding process. The relation between weld line strength in micro injection molding parts and processing parameters is investigated. A visual mold with variotherm unit is designed and constructed, in which the micro tensile specimen with weld line are prepared. Polypropylene (PP) is used as the research material in this study, and six processing parameters were chosen as investigating factors, which were melt temperature, mold temperature, injection pressure, packing pressure, ejection temperature and injection speed. In order to achieve optimized processing parameters and their order of significance, Taguchi experiment method was applied in this presented study. The prediction formulation of the strength of micro weld line was built up by multiple regression analysis based on Chebyshev orthogonal polynomial. The results showed the influencing significance order of parameters from strong to week separately are mold temperature, melt temperature, injection speed, ejection temperature, packing pressure and injection pressure. And the tolerance of micro weld line prediction formulation was found to be lower than 21% through confirmation experiments.  相似文献   

2.
Weld lines are the unfavorable defect not only in normal injection molding process but in micro injection molding process. In this study, polypropylene (PP) was chosen as the processing material and a micro dog-bone tensile test sample was selected as the objective part. The micro tensile part was prepared by the double gate injection mold. An ultrasonic generator was integrated in this mold in order to investigate the effect of ultrasonic oscillation on the micro injection molded weld line strength. The experiments were carried out for studying how the ultrasonic output power and the oscillation inducing time affect the weld line strength. Three output power levels (400, 600 and 800 W) and two inducing mode (Mode 1. the oscillation is induced from injecting moment to ejection moment; Mode 2. the oscillation is induced from injecting moment to packing procedure finishing) were set. The results show that ultrasonic oscillation has obvious influence on the weld line strength; Mode 2 always has better performance than Mode 1 for reinforcing the weld line strength; and when output power is 400 W the weld line strength is the highest. The mechanism of ultrasonic oscillation affecting the micro injection molded weld line was also analyzed by AFM (atomic force microscope) and polarized microscope.  相似文献   

3.
A variotherm mold for micro metal injection molding   总被引:4,自引:1,他引:3  
In this paper, a variotherm mold was designed and fabricated for the production of 316L stainless steel microstructures by micro metal injection molding (MIM). The variotherm mold incorporated a rapid heating/cooling system, vacuum unit, hot sprue and cavity pressure transducer. The design of the variotherm mold and the process cycle of MIM using the variotherm mold were described. Experiments were conducted to evaluate the molded microstructures produced using variotherm mold and conventional mold. The experiments showed that microstructures of higher aspect ratio such as 60 m × height 191 m and 40 m × height 174 m microstructures could be injection molded with complete filling and demolded successfully using the variotherm mold. Molded microstructures with dimensions of 60 m × height 191 m were successfully debound and sintered without visual defects.  相似文献   

4.
As a suitable mass and cost efficiency fabrication method, micro injection molding is doing a very good performance in micro plastic parts production. The mold design is an important part affecting micro parts properties. In this study, a micro injection mold with multi cavities of micro tensile bar is used. These micro cavities are fabricated by a micro milling process in different cross section shapes (semicircle R = 0.5 mm, equilateral triangle D = 0.3 mm, and trapezoid D = 0.336 mm t = 0.2 mm bottom angle = 95°). With an Arburg® 320C injection molding machine, micro tensile test sample are prepared in different processing parameters so that a correlation between the cross section shapes with micro weld line strength in different conditions could be investigated by tensile test. Final results show that when the cross section shape is different, their corresponding weld line strength is also different. Equilateral triangle cross section is leading to strongest weld line, and then followed by trapezoid, semi-circle is the last. By analysis of these tensile test results, the quantitative factor a is defined as the ratio of perimeter to area of cross section shape, and higher a value is corresponding stronger weld line. After weld line strength comparison in different processing conditions, the results show that higher injection pressure induced to lower weld line strength whatever the cross section shape is. By higher mold and melt temperature, equilateral triangle cross section gives improved weld line strength. But mold and melt temperature affect weld line strength negative for other cross section shapes.  相似文献   

5.
Micro injection molded polymeric parts coated with functional thin films/layers show off the promising applications in microsystems area. But the unfavorable and unavoidable defect of weld line in micro injection molding part leads to detrimental mechanical and surface properties. The possibility of the functional thin film for enhancing micro injection molded weld lines was investigated. Two typical coating materials (aluminum and titanium) with various film thicknesses (400, 600, 800 nm) were deposited on one side of the micro injection molded weld line tensile sample via physical vapor deposition (PVD) method. The coated micro weld line samples were characterized by tensile tests. The results show that PVD films of aluminum and titanium can reinforce the strength and stiffness of micro injection molded weld line, even at thin thickness levels. But when the film thickness is increasing, the weaker adhesion between metallic films and polymers decreased the PVD films’ enhancing performance for micro weld line mechanical properties due to the degradation of polymers related to longer time exposure under high temperature.  相似文献   

6.
In this paper, an attempt was made to explore a possibility of powder micro injection molding process in manufacturing ceramic microstructures such as barrier ribs of plasma display panel. The barrier ribs are glass matrix composites with ceramic powder (alumina and/or titania) filler. In this molding process, a thermosetting paste was molded into polydimethlsilosane soft molds prepared by replication of thick film resist (SU-8) molds. The SU-8 mold was patterned with UV-lithography. The effects of powder content in the paste on paste viscosity and sintering characteristics of molded samples were examined. In addition, effect of molding speed on pore trapping in the microstructure was studied. These results indicated that the powder micro injection molding process at ambient temperature has merits of low-pressure injection molding process with superior mold release characteristics.  相似文献   

7.
Powder injection molding is a preferred technology for the production of micro parts or microstructured parts. Derived from the well known thermoplastic injection molding technique it is suitable for a large-scale production of ceramic and metallic parts without final machining. To achieve good surface quality and control the part size and distortions is an important goal to allow mass production. This means that all process steps like part design adjusted for MIM/CIM-technology, appropriate choice of powder and binder components and injection molding simulation to design the sprue are required. Concerning the injection molding itself high quality mold inserts, high-precision injection molding with suitable molding machines like Battenfeld Microsystem50 or standard machine with special equipment like variotherm or evacuation of the molding tool and an adjusted debinding and sintering process have to be available. Results of producing micro parts by powder injection molding of ceramic feedstock will be presented.  相似文献   

8.
A 5 × 5 micro Alvarez lens array mold was fabricated using a 5-axis ultraprecision diamond machine and an Alvarez lens array was manufactured by injection molding process. Unlike conventional processes for asymmetrical element fabrication such as small tool grinding, this research demonstrates slow tool servo broaching process that allows the entire Alvarez lens array to be accurately machined on a metal mold in a single operation. To further reduce manufacturing cost, injection molding was used to fabricate the Alvarez lens arrays. The mold and molded lenses were both measured using an optical profiler. All measured profiles showed a good agreement with design and surface roughness also indicated an optical surface finish. The functionality of the molded polymeric lens arrays was achieved when the focal lengths were varied by laterally translating the molded Alvarez lens array pair. This research is a demonstration of the capability of fabricating complex optics using the same approach.  相似文献   

9.
Nano fillers reinforced polymer composites have been widely applied in microsystem technologies. As one popular micro fabrication technology, micro injection molding is playing the key role in manufacturing micro scale parts made of nano thermoplastics composites. As a defect in micro injection molding parts hard to avoid, the weld line causes detrimental mechanical and physical properties, particularly in case of nano filled composites. In this study, the hybrid carbon nanofibers (CNFs)/TiO2 nano particles (1:1) filled polypropylene (PP) was prepared by inner melts mixing process with various weight contents(10, 20, 30 and 35 wt%). Micro tensile samples with weld lines for all composites were formed by micro injection molding process at constant processing conditions. Mechanical properties of micro weld lines were tested by tensile test characterizing method. The results show that comparison with neat PP, the samples with weld lines made of hybrid nano PP composites are showing lower tensile strength and elongation percent, but higher E modulus. As increasing nano filler contents, the tensile strength and elongation of micro weld line samples are decreasing, while the E modulus is improved considerably.  相似文献   

10.
Simulation of the filling process in molding components with micro channels   总被引:6,自引:0,他引:6  
In micro molding of components with micro features, the ability for the polymer melt to flow into the micro channels is a crucial factor for successful molding. In this case, the molded volume is about the same as the conventional molding. The penetration distance into the microstructure depends on the flow rate and the cooling rate of the micro features, which is function of the geometric dimensions. In this study, a simplified model was established to estimate the injection distance into the micro channels of a mold insert. The effect of the mold temperature, injection rate, and micro channel dimension on the filling distance was investigated based on the model. The filling distance increases dramatically with respect to the increase of the channel width. In molding of components with micro features as those analyzed in this study, decrease of the part thickness could enhance the filling in the micro features.The authors would like to thank for the financial support from National Science Council in Republic of China under the contract number of NSC 91-2212-E006-131.  相似文献   

11.
This study aims to develop processing techniques to improve dimensional accuracy of micro-size parts produced by micro metal injection molding (μ-MIM). Micro dumbbell specimens were molded by a micro injection molding machine, which can monitor the cavity pressure in injection molding process. The effects of particle size and distribution of metal powder on dimensional accuracy of micro dumbbell specimens at both grip parts were investigated. As the results, it is confirmed that the powder properties and sintering conditions to improve the dimensional accuracy of micro-MIM parts.  相似文献   

12.
Injection molding has been a preferred production process in the fabrication of complex components. In this technique not only the injection machine and mold play important roles, but also different process parameters have strong effects on the quality of the final products. The production process might be stopped because of different types of faults on the production line. In this paper, a case-based reasoning (CBR) methodology is employed to implement an intelligent fault detection system for the production of injection molded drippers. This CBR system utilizes similar occurred faults to solve particular new problems. Case retrieval and similarity measurements are defined based on fault occurrence weight of features (fault’s causes). Application and accuracy of the proposed system are experimentally tested and validated through analyzing the current case study. The obtained results indicated that the implemented CBR system is able to detect the faults on the injection molding machine. By utilizing the proposed system machine downtime is reduced, speeded production with high productivity is achieved.  相似文献   

13.
In micro injection molding, the melt flow behavior is important for the final product quality. However, the current process monitoring and measurement technology are not adequate enough to provide a direct analysis access. In the presented study, a glass insert mold designed for performing the direct visual analysis for melt flow phenomena in micro injection molding is introduced. The micro tensile specimen with 0.1 × 0.4 mm2 (depth × width) cross section dimension is chosen as the objective part. The correlation between processing parameters (injection pressure, injection speed, mold temperature) and flow behavior was investigated and analyzed. The results show that the injection pressure put an obvious effect on the filling speed through micro cavity. Injection speed can influence the filling time dramatically also. Higher mold temperature brings positive influence with the flowing speed, due to the lower viscosity of polymers in higher mold temperature.  相似文献   

14.
There have been technical limitations to manufacture microstructures due to difficulty of demolding during replication process of high aspect ratio microstructure in mass production technologies. In the present study, the fabrication of a novel sacrificial micro mold insert and powder injection molding process using such a micro mold insert is proposed and developed. It utilizes a synchrotron radiation to fabricate the shape of polymer based sacrificial mold inserts and then these mold inserts were exposed at X-ray once more to adjust its solubility. This second X-ray exposure facilitates dissolving of mold inserts instead of demolding process which have difficulties like pattern collapses or defects in case of precise replication process. In this manner, severe problems of demolding process in conventional mass production technologies can be efficiently overcome. To verify the usefulness of the proposed technique, polymer based micro mold inserts with several tens of micrometer sized structure for piezoelectric sensor applications were fabricated using X-ray micromachining process radiated synchrotron. The solubility of mold inserts were optimized by the second X-ray exposure without an X-ray mask and then subsequent powder injection molding process was utilized with a piezoelectric based material. Finally, piezoelectric ceramics with micrometer-scale and high aspect ratio of 5 were successfully fabricated, verifying that the present sacrificial mold system is useful for the precise replication process such as the fabrication of microstructure with high aspect ratio or complicated structure.  相似文献   

15.
This study aims to develop processing techniques to improve dimensional accuracy of fine metal parts produced by metal injection molding. Micro dumbbell specimens were molded by the micro injection molding machine, which monitor the cavity pressure during injection molding. Among various injection molding conditions, the influences of injection volume on the cavity pressure, and dimension of both green compacts and sintered parts were investigated. For dimension control, the importance of monitoring cavity pressure at each shot was verified.  相似文献   

16.
Feedstock development for micro powder injection molding   总被引:6,自引:2,他引:6  
Powder injection molding of microstructured parts with high aspect ratios requires feedstocks, which have a high mechanical stability for demolding. The binders of the feedstocks have to allow pressure free and complete debinding and sintering without deformation in the submillimeter range. For complete molding of especially small and complex detailed microstructures, powders with a small particle size have to be used. Additionally the microstructured mold inserts themselves must have an appropriate design, which allows complete filling of the cavity and an easy removal of the molded microstructures. By the development of new binder compositions, adapted micro mold inserts and optimized processing parameters it was possible to manufacture specimens for micromechanical investigations without substrate plates. Thus many machining and finishing worksteps, which have great influence on the mechanical properties of the microstructures, can be omitted. Received: 10 August 2001/Accepted: 24 September 2001  相似文献   

17.
Advances in micro and nano fabrication technologies for MEMS require high-level measurement techniques with regard to sampling and sensitivity. For this purpose at the Institute of Microtechnology (IMT) highly sensitive piezoresistive 3D force sensors based on SU-8 polymer have been developed. In this paper we present an improved micro fabrication process for a double-sided micro structured design. The sensors are produced by multilayer processing techniques such as UV lithography and coating methods. The double-sided micro structured design demands a photoresist application method which simultaneously features a top side structuring and a casting from a mold. We use a new micro molding process to meet the demands. The micro fabrication technology is described, focusing on the development of the molding structure for shaping of the bottom side and a capable release process for the detachment of the molded structures. The fabrication process of the SU-8 mold layer is optimized to fabricate molding structures with heights from a few μm up to 350 μm. Therefore different SU-8 formulations, namely with classification numbers 5, 25, 50, and 100, have been used. The fundamental limitations for the mold design result from the lithography process, which defines the smallest lateral resolution, and from the characteristics of a molding process, e.g. the impossibility to realize an undercut. To allow for reliable release, the molding structures have to be coated with a sacrificial layer. Silicon nitride is deposited onto the substrate with accompanying monitoring of the deposition temperature during the PECVD process.  相似文献   

18.
Replication of microlens arrays by injection molding   总被引:3,自引:1,他引:2  
Injection molding could be used as a mass production technology for microlens arrays. It is of importance, and thus of our concern in the present study, to understand the injection molding processing condition effects on the replicability of microlens array profile. Extensive experiments were performed by varying processing conditions such as flow rate, packing pressure and packing time for three different polymeric materials (PS, PMMA and PC). The nickel mold insert of microlens arrays was made by electroplating a microstructure master fabricated by a modified LIGA process. Effects of processing conditions on the replicability were investigated with the help of the surface profile measurements. Experimental results showed that a packing pressure and a flow rate significantly affects a final surface profile of the injection molded product. Atomic force microscope measurement indicated that the averaged surface roughness value of injection molded microlens arrays is smaller than that of mold insert and is comparable with that of fine optical components in practical use.This paper was presented at the Fifth International Workshop on High Aspect Ratio Microstructure Technology HARMST 2003 in June 2003.The authors would like to thank Korean Ministry of Science and Technology for the financial supports via the National Research Laboratory Program (2000-N-NL-01-C-148) and RAYGEN Co., Ltd. for the technical help in using the 3D profile measuring system.  相似文献   

19.
Multi-component injection molding combined with electroplating, the so-called MSG process, represents a promising process chain to replicate metallic microstructures. MSG is the German acronym of ‘Mehrkomponenten-Spritzgießen und Galvanoformung’, in English ‘Multi-component Injection Molding and Electroplating’. The process is based on the highly accurate reproduction of surface details through injection molding to build a microstructure into a two-component template and electrodeposition of e.g. nickel into this cavity. This electroplated micropart is the replication of the former structure. To study the influence of the mold insert on the accuracy of the molded part and the produced microparts, a test specimen was fabricated and analyzed using a milled mold insert. On the mold insert, three microcoil parts, the components of a microgripper, were micromilled. The effect of the individual process steps on the surface quality and dimensional changes of the final microcoil will be presented. It will also be shown how the quality of the injection molding insert influences the dimensional accuracy of the produced microparts. Finally, potential process improvements will be outlined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号