首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用钝化注入平面硅探测器(PIPS)测量α、β时,某些情况下只通过能量甄别无法区分这两种粒子,而通过脉冲形状甄别的方法可以很好地解决这一问题.通过研究α、β粒子在PIPS中脉冲形状不同的机制,分析了脉冲形状的特征;测量分析了一款PIPS探测器的电压脉冲上升时间及其随偏压的变化;分析得出了对PIPS探测器进行脉冲形状甄别...  相似文献   

2.
通过测量不同类型探测器或同一类型探测器不同台(路)对不同能量α/β放射性粒子的计数效率和等效因子,比较它们之间等效因子的一致性,探讨各类型探测装置在总放射性测量中的适应性。结果显示,常用的3种探测器即复合有机闪烁体、流气式正比计数器、金硅面垒半导体探测器对总α和总β粒子的计数效率-粒子能量关系总体上一致,总α计数效率与能量呈指数关系,总β计数效率与能量呈对数关系,低能β出现偏转。3种探测器能量响应比对的实验结果显示,复合有机闪烁体和流气式正比计数器两者的α和β等效因子具有良好的一致性,而金硅面垒半导体探测器对α测量的等效因子与前两种探测器相似,但是对β粒子的能量响应有显著差异,低能β等效因子明显偏低,因此金硅面垒半导体探测器不宜于总放射性测量和食品卫生检验。  相似文献   

3.
采用蒙特卡罗方法计算了硅光伏探测器探测α粒子的能量分辨率等参数,通过实验测得了其α谱和探测效率。实验表明,硅光伏探测器对α粒子具有较高的探测效率和能量分辨率,受β、γ射线影响小,非常适合用作α粒子探测器。  相似文献   

4.
CR-39探测器对α粒子入射角度和能量响应的实验研究   总被引:1,自引:0,他引:1  
为掌握固体径迹探测器CR-39对α粒子的入射角度和能量响应特性,通过建立1个可调节α粒子的入射角度和入射能量的241Am源照射系统,进行了不同入射角度和入射能量的α粒子照射CR-39探测器的实验研究,比较了不同照射条件下的径迹密度.实验结果表明,CR-39对α粒子的能量响应下限约为0.5 MeV,对入射角度响应的上限约为70°.本研究结果可为优化设计测氡的扩散杯(瓶)、提高其对氡的探测效率等提供科学的指导依据.  相似文献   

5.
4H-SiC肖特基二极管α探测器研究   总被引:1,自引:0,他引:1  
碳化硅(SiC)是一种具有优良物理性能的宽禁带半导体材料,可作为探测器的优良探测介质。用241Am源5.486 MeV的α粒子研究4H-SiC肖特基二极管α探测器的能量分辨率和信号相对上升时间等特性。在真空室中,使SiC探测器暴露在α粒子下,SiC探测器输出良好的响应信号。SiC二极管对5.486 MeVα粒子的能量分辨率最佳可达3.4%;经前置放大器FH1047输出和示波器观测,脉冲幅度随偏压增加而稳定在(35.39±0.21)mV;脉冲上升时间随偏压增加而稳定在(137.87±9.44)ns。4H-SiC肖特基二极管对α粒子响应良好,可用于α粒子强度测量。结合SiC耐辐照、耐高温等特性,进一步改进后有望制成分辨率更高、上升时间更快、耐辐照的新型α探测器和中子探测器。  相似文献   

6.
氡子体α能谱法测量仪器探测效率的测定   总被引:1,自引:0,他引:1  
康玺  肖德涛 《核技术》2005,28(9):700-703
在氡子体α能谱法测量中,一个需要考虑的问题是探测器对不同能量的α粒子是否具有相同的探测效率。本文用^241Am标准源和加拿大Pylon公司的氡子体标准源对ORTEC八通道α谱仪进行了全谱和高、低能量段探测效率的测定,并对两种测量方法存在的误差进行了分析。测量结果表明,两种方法测得全谱探测效率在误差范围内是一致的;在用氡子体源测量谱仪的探测效率时,α能谱由于滤膜的自吸收而存在着峰重叠现象,经重叠因子修正后,仪器对氡子体较高能量的α粒子(7.69 MeV)的探测效率要略大于较低能量的α粒子(6.00 MeV),且探测效率的差异随滤膜种类的不同而变化。用氡子体标准源对仪器进行刻度更接近于氡子体测量的实际情况。  相似文献   

7.
设计了一套新型低本底α/β测量系统。该系统采用ZnS(Ag)薄板复合塑料闪烁体作为主探测器,平板形塑料闪烁体作为反符合探测器,实现样品中总α和总β的同时测量。利用ARM架构的MCU作为系统运行核心,FPGA硬件电路作为数据采集单元,基于脉冲宽度甄别方法实现测量系统的α/β脉冲甄别。对该系统进行了主要性能测试,测试结果表明:测量α粒子时,本底为0.003 min~(-1)·cm~(-2),对~(239)Puα标准平面源的探测效率为92.5%,α对β道的串道比为0.87%;测量β粒子时,本底为0.072 min~(-1)·cm~(-2),对~(90)Sr-~(90)Yβ标准平面源的探测效率为62.0%,β对α道的串道比为0.03%。  相似文献   

8.
为了实现无富集条件下对碘-131的快速精准测量,提出了针对医疗场所空气中碘-131的γ、β联合测量方法。通过Geant4建立探测系统模型,模拟研究探测系统对碘-131释放的β粒子和γ射线进行探测,其中NaI探测器和塑料闪烁体探测器分别实现对γ射线和β射线的测量。模拟计算表明,探测系统获取的γ全能峰计数、β计数与碘-131浓度之间存在线性关系。系统可首先通过获取γ能谱分析碘-131特征峰实现碘-131识别,利用γ射线全能峰计数与β射线计数之间的线性关系确定β射线贡献是否仅来自于碘-131,然后利用β射线的高探测效率进行快速测量。模拟计算探测系统测量1 h,其双3英寸NaI探测器的探测效率为1.7%,其MDC可达到19.59 Bq/m3,其塑闪探测器的探测效率为36%,MDC为7.93 Bq/m3,均显著低于38.50 Bq/m3。基于γ全能峰计数和β计数的联合计算公式计算的碘-131的浓度,相对误差≤0.6%。提出的探测系统充分利用了β射线探测效率高和γ能谱能量识别能力强的优点,通过γ能谱全能峰计数和β计数测量可实现碘-1...  相似文献   

9.
采用金硅面垒探测器及CsI(Tl)探测器设计制作了一套△E-E型探测空间粒子的望远镜系统,利用α粒子、质子、氧离子、铁离子4种粒子对该望远镜系统和电子学系统进行性能测试和能量刻度。电子学的增益系统分为三挡,分别为1.0、1/3和1/12.75。实验结果表明:对于α粒子,采用1/3挡,在△E_1和△E_2探测器中每道能量分别是H_1=0.107 MeV和H_2=0.123 MeV。对质子能量的刻度,采用1挡,每道能量H值为0.016 7 MeV,这个H值几乎不随能量变化,在CsI探测器中,每道能量H为1.047 MeV。对氧离子的能量刻度采用1/12.75的挡别,刻度出每道能量是1.11 MeV。在探测器中,沉积能量高于50 MeV,电子学系统进入饱和状态。对铁离子的标定结果与氧离子的结果相同。  相似文献   

10.
采用金硅面垒探测器、CsI闪烁体和改进的快响应电子学系统 ,设计了一套空间带电粒子谱探测系统 ,包括ΔE E望远镜系统和数据的获取及处理系统。根据该空间粒子探测谱仪系统 ,提出了可同时或分别探测空间带电粒子能谱和通量的方法。可探测粒子的种类和能量分别如下 :质子 ,能量范围为1~ 2 0 0MeV ;α粒子 ,能量范围为 1~ 2 0 0MeV u ;氧离子 ,能量范围为 1 7~ 4 96MeV u ;铁离子 ,能量范围为 2 5MeV~ 1 0GeV u。  相似文献   

11.
研制了一种可安装于D-T中子发生器内的伴随α粒子探测器.该探测器选用直径30 mm、厚0.5 mm的掺铈铝酸钇(YAP:Ce)闪烁体,可密封于D-T中子发生器内.采用蓝宝石玻璃作耐高温光学法兰,粒子在YAP闪烁体中产生的光信号经过蓝宝石玻璃传到光电倍增管光阴极上.光电倍增管阳极输出α粒子的电脉冲信号.探测器输出负信号的前沿下降时间约为6 ns;对241Am 5.486 MeV α粒子的能量分辨率约为5.4%.在高压倍加器用作D-T中子源时,在15 kcps计数率下,该探测器对3.5MeV伴随α粒子的能量分辨率约为27%,峰谷比达到10:1.YAP闪烁体及蓝宝石玻璃经8 h400℃烘烤后,该探测器的时间性能和能量分辨性能未发生改变.实验表明研制的探测器满足了密封D-T中子发生器的制造工艺要求,可安装于小型D-T中子发生器内用作伴随α粒子探测器.  相似文献   

12.
为满足便携式核辐射污染监测系统研制需求,设计了一种基于Si PM的小体积α、β放射性活度测量装置。该装置的探测器部分以塑料闪烁体和Si PM为核心,使用该新型探测器能够保证高灵敏度的同时缩小系统体积;计数器部分以FPGA为核心,包含了去抖动、边沿检测、脉冲计数、数码管显示等单元;探测器输出的微弱电流脉冲信号依次经后级电荷灵敏放大、整形滤波、电平转换电路的处理,最终以标准TTL电平信号的形式输出给脉冲计数器,实现对放射性粒子的实时监测。测试结果表明:装置对α源的探测效率约为43.3%,对β源的探测效率约为11.5%,能够有效完成α、β放射性活度测量。  相似文献   

13.
爆炸物检测中的模拟计算   总被引:1,自引:1,他引:0  
为优化基于伴随α粒子技术的爆炸物检测系统中的γ探测器和数据分析软件,利用蒙特卡罗程序EGSnrc对γ探测器的探测效率和能量响应分别进行了模拟。NaI(Tl)、BGO等几种无机闪烁体γ探测器探测效率的模拟计算结果为探测器的优化选择提供依据;对碳、氧单质元素、硝酸氨、模拟炸药样品在14MeV中子作用下的特征γ射线,在Φ5″×8″NaI(Tl)探测器的能量响应模拟计算结果进行了分析,并与实验测量能量响应进行了比较。结果表明,模拟方法可靠,应用该方法可对其他的单质材料来进行响应计算以建立响应函数数据库。  相似文献   

14.
设计了一款轻型的α/β放射性气溶胶实时采样与测量系统。该系统通过微型泵对气溶胶进行实时取样,放射性物质富集在滤膜表面;PIPS探测器对滤膜进行直接测量,通过反符合设计,有效降低γ射线的干扰。在室外进行空气采样测试,该系统对α和β的探测下限为191.16 Bq/m3和1 133.27 Bq/m3。该系统的质量不足5 kg,可搭载在无人机、机器人及其他装备上,方便在复杂环境及核应急环境下使用。  相似文献   

15.
采用MC法对用于热中子探测的碳化硅探测器开展设计。优化了中子转换层参数和半导体器件参数,研究表明采用~(10)B作为中子转换材料,其最优厚度为2μm,在系统甄别阈为300 keV时对应的探测效率理论值为3.29%。制备了碳化硅外延层厚度20μm,灵敏区面积5 mm×5 mm的碳化硅器件,在外加反向偏压达180V时,其漏电流仅20.8 nA。性能测试表明:该器件对4.7-6.0 MeV的α粒子具有极好的能量线性,其线性度达0.999 97。对5.49 MeV的α粒子的能量分辨率为1.03%,对应半高宽57.3keV,与SiC高分辨α探测器分辨率相当。  相似文献   

16.
本文报道一台以φ75×75mm 的 NaI(Tl)晶体为主探测器,以φ430×500mm 的环型塑料闪烁体为反符合探测器,以另一φ75×75mm 的 NaI(Tl)晶体为符合探测器所组成的反符合屏蔽低本底γ谱仪。采用含放射性杂质少的结构物质和屏蔽材料,符合、反符合等措施降低本底。在井型反符合屏蔽条件下,主探测器在0.05—2.0MeV 能区内的积分本底为68cpm。对~(137)Cs(φ8mm)面源的能量分辨率为10.5%,全能峰效率为10.9%,康普顿散射减弱因子可达2.1;当测量时间为1000min,置信水平为95%时,面源最小可探测下限为1.13dpm。该谱仪适于环境样品及某些弱放射性样品的测量。  相似文献   

17.
目前用于测量α衰变率的方法主要有α-γ符合,-π计数,小立体角计数、液体闪 烁计数及电离室等测量装置。这些方法各有其优缺点。电离室作为一种经典而又可靠的设备,早已用于α放射性强度的相对及绝对测量。对于核素(特别是锕系元素核素)的α放射性的能量一般为4—9MeV。电离室对于这种能量范围的α粒子的探测效率是相同的。因此在这种情况下测量,电离室是十分方便和有利的。但对于高准确度的测  相似文献   

18.
为了掌握利用CR-39固体核径迹探测器识别α粒子和质子的方法,应用粒子与物质相互作用理论和径迹蚀刻动力学经验模型,模拟了α粒子和质子在CR-39固体核径迹探测器上的径迹形貌,计算出了3~8 MeV的α粒子和1~9 MeV的质子最佳蚀刻条件。根据对应的最佳蚀刻条件,计算获得的α粒子和质子的径迹直径、灰度值、径迹深度,并据此对相同能量的α粒子和质子、不同能量的α粒子、不同能量的质子进行识别。同时,采用CR-39固体探测器对α粒子(5.48 MeV)和质子(3 MeV)进行了实验测量,在模拟计算所获得的最佳蚀刻条件下,实验测读了α粒子径迹。实验测量得到的α粒子径迹直径与模拟值相差0.36%~9.70%。实验测量的最佳蚀刻时间和模拟的最佳蚀刻时间相差5.60%,这些结果验证了模拟方法的可行性。  相似文献   

19.
本文基于60Co大型客体辐射成像系统,分析了在穿透不同位置和不同厚度的钢板时散射粒子的数量和能量的分布情况、散射的扩散效应以及不同厚度和不同宽度的后准直器对散射粒子的屏蔽效果。分析结果表明,在水平方向上,绝大部分散射粒子来自于物体出射面上初始射线束覆盖区域,这将限制后准直器的屏蔽效果;当钢板距离探测器阵列的间距缩小至安全行车的极限间距500 mm时,200 mm厚、5 mm宽的铁后准直器可屏蔽约39.74%的散射粒子,而当间距增大到1 750 mm以上时,后准直器反而会增加散射粒子数量,无法起到屏蔽作用。  相似文献   

20.
在低水平α、β放射性测量中,可以采用不同的探测器,如半导体探测器,闪烁计数器及流气式正比计数管等。 半导体探测器对带电粒子的测量,有较高的探测效率和较低的本底。由于我国目前生产的探测器有效面积较小,使仪器探测灵敏度受到限制,加之它的表面机械性能较差,污染后去污不方便,且容易损坏。 ZnS(Ag)闪烁计数器具有良好的鉴别α粒子和β、γ辐射的能力,本底较低,可用于α粒子的测量,但探测效率不高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号