首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
铜冶炼含砷炉渣的高效安全处置取决于对其含砷物相及其浸出毒性的准确认识。采用X射线荧光光谱、X射线衍射、电子探针显微分析、扫描电子显微术和选择性逐级提取法对铜熔炼渣中的含砷物相进行鉴定,并基于对炉渣中不同含砷物相的选择性逐级提取结果探讨渣中砷浸出毒性的可能来源。结果表明,砷以水溶性砷、铜砷金属间化合物、铜砷硫化物以及固化在铁橄榄石和硅酸盐玻璃相中的砷等形式赋存在熔炼渣中。浮选过程可以去除熔炼渣中的水溶性砷并回收铜砷金属间化合物,降低渣尾矿的砷浸出毒性,使其符合USEPA和SEPA标准要求。  相似文献   

2.
采用氧化浸出和电位控制技术从铜冶炼烟尘中浸出金属,研究H2O2用量、H2O2加入速度、初始盐酸浓度、浸出温度、初始液固比和浸出时间对金属浸出率的影响。最终得到最优浸出条件为:H2O2用量0.8mL/g(氧化还原电位为429 mV)、H2O2加入速度1.0 mL/min、初始硫酸浓度1.0 mol/L、初始盐酸浓度1.0 mol/L、浸出温度80°C、初始液固比5:1 mL/g以及浸出时间1.5 h。在此最优条件下,铜冶炼烟尘中的铜和砷能被有效地浸出,剩下的浸出渣可作为一种合适的铅冶炼资源。此时,铜、砷和铁的平均浸出率分别为95.27%、96.82%和46.65%。  相似文献   

3.
采用铁粉置换法处理湿法炼锌产生的锌浸渣还原浸出液,产出一种含砷铜渣,以该含砷铜渣为研究对象,利用氧压酸浸缓慢分解含砷铜渣,使其中的铜、锌等溶解进入溶液,同时,砷、铁以臭葱石的形式沉淀为浸出渣,从而将铜的浸出和砷、铁的沉淀在同一反应釜同一过程中完成,有效实现含砷铜渣中有价金属的浸出过程与杂质的沉淀过程在同一过程同步进行。结果表明:在反应温度为135℃、反应时间为4 h、液固体积质量比25 mL/g、硫酸浓度为50 g/L、氧分压500 kPa、铁砷摩尔比为1的条件下,浸出渣中铜含量仅为2.03%,浸出率达到97.72%,砷含量达到26.06%,沉淀率达到95.98%;浸出液中铜的浓度达到20.47 g/L,砷浓度小于0.63 g/L,实现了铜和砷的高效分离,提高了铜金属回收率和资源综合利用率。浸出渣中砷均以臭葱石(FeAsO4·2H2O)的形式存在,符合当前的环境友好型发展理念。  相似文献   

4.
铜烟灰中砷与有价金属的高效分离一直是制约二次资源利用的核心问题。以典型铜冶炼烟灰为原料,研究了影响烟灰选择性湿法脱砷的主要因素以及无定形FeS代替传统硫化剂在烟灰浸出液中的铜砷高效硫化分离行为。结果表明:在最佳浸出条件下,烟灰中铜浸出率超过95%,砷浸出率超过86%;无定形FeS随着陈化时间的延长,由无定形逐渐趋于晶体化,反应活性逐渐减弱;与Na2S相比,无定形FeS具有良好的硫源缓释效应可有效减少反应过程中H2S气体的逸出和改善产物的结晶性能。无定形FeS在实际浸出液中对铜的去除率大于99%,硫化铜渣中砷含量不超过2%(质量分数);缓释除砷阶段渣砷品位大于25%。无定形FeS为铜烟灰中有价金属与砷的分离提供了一种较优的备选方案。  相似文献   

5.
由含砷烟灰直接制取砷酸铜   总被引:9,自引:0,他引:9  
提出了一种处理含砷烟灰的方法,并用这种方法处理铜转炉烟灰。首先将砷一次性地彻底除去,并以较纯的形态富集,然后加工成砷酸铜,砷回收率达99%。同时,铅、铋、锌等有价金属很好地得到分离、回收,回收率高  相似文献   

6.
云南某地高砷多金属矿含有价金属铅、锌及稀贵金属金、银和铟,常规回收方法环境污染严重,因此采用加压氧化酸浸预处理,锌铜进入酸浸液另行回收,浸出渣硫脲浸出金和银,在最佳条件下,金和银浸出率可从未预处理的11.29%和14.17%、分别提高到93.94%和96.85%,浸出速度也大大提高,能获得较好的经济效益。  相似文献   

7.
湿法炼锌过程中产生的窑渣含有大量的有价金属。锌冶炼污酸具有成分复杂、酸度高、含有大量的砷及其他重金属离子的特点。根据锌窑渣和污酸的理化性质,将二者进行联合浸出处理,考察反应时间、反应温度、液固比、H_2O_2加入量、窑渣粒径对锌窑渣与污酸联合浸出行为的影响。结果表明:在反应时间3 h、反应温度50℃、液固比(mL/g) 10:1、H_2O_2加入量为16 mL、窑渣粒径75~106μm条件下进行二段逆流浸出,铜、铁、锌的浸出率均高于90%。浸出后液的酸度从172.48 g/L降至20 g/L左右,砷浓度达9 g/L左右,为后续沉砷处理提供了条件。另外,对浸出渣进行分析,可知浸出渣中主要物相为CaSO_4·2H_2O、SiO_2和焦炭,其中银品位最高达484.7 g/t,可作为提银原料。  相似文献   

8.
以含砷污酸为原料,通过中和除杂-沉砷-洗涤-浸出-蒸发结晶-溶解制取三氧化二砷,实现含砷污酸的资源化。结果表明:将污酸中和至pH为2,使污酸的酸度降低;在中和液中加入硫酸铜,控制Cu和As的摩尔比为1.5:1,调节体系pH为8沉淀As,得到亚砷酸铜,As的沉淀率达到97.81%;通过洗涤除杂提高亚砷酸铜中As和Cu的含量;采用10%硫酸溶液,在液固比为5:1条件下浸出亚砷酸铜,所得溶液蒸发结晶得到三氧化二砷与硫酸铜的混合物;用水溶解该混合物后过滤得到硫酸铜溶液及符合 YS/T-99-1997As2O3-3号产品标准的三氧化二砷。  相似文献   

9.
砷酸铜制备工艺过程热力学分析   总被引:3,自引:0,他引:3  
绘制了Cu-As-H2O系电位-pH图、不同As浓度下lg[Cu]T[As]T)-pH图以及Fe-As(V)-H2O系lg[Fe]T-pH图等,分析了由墨铜渣制备胂酸铜过程的热力学。酸性氧化浸出可同时浸出Cu和As,pH=2左右脱脱铁率可达99%以上。铜砷比和pH值的不同,可以得到不同形式的砷酸铜;CuHAsO4,Cu2AsO4OH,Cu5H2(AsO4)。在胂酸铜制备工艺条件下,所得砷酸铜分子式为Cu5H2(AsO4)4。热力学分析结果与XRD相一致。  相似文献   

10.
还原酸浸法从低品位水钴矿中提取铜和钴   总被引:2,自引:0,他引:2  
以Na2SO3为还原剂从水钴矿还原酸浸液中提取铜和钴,研究了还原剂种类及用量、浸出温度、硫酸浓度等因素对水钴矿还原酸浸过程中有价金属铜和钴浸出率的影响。结果表明,Na2SO3是较适宜的还原剂;在还原剂用量为水钴矿原矿质量的10%、硫酸浓度为3 mol/L、浸出温度为60℃、液固比为2-1、浸出时间为60 min的条件下,铜和钴的浸出率分别达99.06%和98.87%。并提出了"M5640萃铜→黄钠铁矾法除铁→碳酸钠除铝→氟化钠除钙、镁→蒸发结晶得钴产品"的后续分离净化流程,能有望应用于水钴矿及类似物料中有价金属的提取与分离的工业生产。  相似文献   

11.
开发从含铜砷的铜电解黑泥中分离和回收铜的湿法冶金新工艺。该工艺包括黑泥氧化酸浸和浸出液中选择性硫化沉铜两个步骤。研究各种工艺参数对铜和砷的浸出和沉淀的影响。在第一阶段中,最佳工艺条件为:初始H2SO4浓度为1.0 mol/L,液固比为10 mL/g,80℃下连续浸出4 h。此条件下铜浸出率可达95.2%,砷浸出率为97.6%。同时,通过Avrami模型成功模拟氧化酸浸过程铜和砷的浸出动力学,发现铜和砷浸出反应的表观活化能分别为33.6和35.1 kJ/mol,表明该浸出过程主要受化学反应和扩散混合控制。在选择性硫化沉淀过程中,最佳工艺条件为:硫与铜摩尔比2.4:1、时间1.5 h、温度25℃。此条件下99.4%的铜以Cu S形式回收,而砷的沉淀率仅0.1%。  相似文献   

12.
铁酸锌是锌中性浸出渣中的主要物相,热酸浸出是处理中性浸出渣的主要方法之一。研究了一种采用硫化锌精矿作为还原剂对锌中性浸出渣进行还原浸出的方法。研究发现,采用硫化锌精矿作为还原剂不仅能高效浸出锌中性浸出渣中的有价金属,而且同时实现溶液中Fe~(3+)向Fe~(2+)的还原。采用两段逆流浸出工艺,98.1%锌和97.5%铟被浸出,浸出液中Fe~(2+)/Fe~(3+)的摩尔比达到9.6。同时发现,浸出过程中铁和铜几乎完全浸出,而锡只有部分浸出。  相似文献   

13.
针对锌浸出渣处理过程中存在有价金属回收率低、危废铁渣量大等关键技术难题,本文提出了锌浸出渣Ⅰ段控铁低酸加压浸出.Ⅱ段深度高酸加压浸出的两段逆流加压酸浸工艺路线。以某湿法炼锌企业产出的含锗锌浸出渣为研究对象,重点研究了Ⅰ段控铁加压低酸浸出过程中锌、锗、铁的浸出行为,铁的高温水解沉淀行为以及铁物相演变规律。结果表明:温度是影响铁高效沉淀与铁物相组成的关键因素,升高温度能促进Fe3+水解生成铁矾(MFe3(SO4)2(OH)6),并有利于铁酸盐(MeFe2O4)的溶解。降低初始酸度、延长反应时间均有利于铁矾晶体的发育长大;在高酸体系下,铁矾的热力学稳定性降低,且不利于Fe3+的水解沉淀,但通过升高反应温度可使Fe3+水解生成铁矾和赤铁矿(Fe2O3)等沉铁物相,达到铁高效沉淀分离的目的;因锌浸出渣中铁主要以Fe3+形式存在,故氧分压...  相似文献   

14.
以典型石灰铁盐法处理二种含砷废水产生的污泥(污酸渣和砷酸钙渣)为研究对象,采用ICP-AES、SEM-EDS、XRD、XPS和化学物相分析等检测手段对其化学组成、形貌特征、物相结构及砷的赋存状态进行研究,采用毒性浸出实验和BCR三步连续提取法考察污泥中砷的浸出行为。研究结果表明,污酸渣和砷酸钙渣中砷的含量分别为2.5%和21.2%,主要组成物相为砷酸盐及砷氧化物,均以无定型的颗粒均匀分散或团聚在污泥中。砷的浸出毒性超出TCLP标准规定限值的119和1063倍,浸出率分别为47.66%和50.15%。砷以酸可提取态和可还原态为主,两者共占90%左右,而稳定的残渣态含量相对较低,这是含砷石灰铁盐渣浸出毒性大、环境活性高的直接原因。本研究为含砷石灰铁盐渣无害化处理技术提供了大量有用的基本数据。  相似文献   

15.
以铜冶炼和铅锌冶炼产生的硫化砷渣为研究对象,采用XRD、Raman、SEM-EDD、TG-DTA、XPS和化学物相分析等检测手段研究其理化特性。采用毒性浸出程序(TCLP)、毒性浸出测试国家标准(CSLT)、三步连续浸提程序(BCR)和批次浸出实验(BLE)分析硫化砷渣的环境稳定性。不同冶炼厂的硫化砷渣理化和环境特性具有明显的差异。物相组成和显微分析表明,ASS-I主要由超细的絮状颗粒组成,这种颗粒为粘附有无定型硫的无定型硫化砷。AAS-II主要组成为无定型硫化砷。两种来源的硫化砷渣中砷均为正三价,但是硫的价态组成则有所不同。同时,两种来源的硫化砷渣均具有热不稳定性。TCLP和CSLT结果表明,浸出液中砷和铅的浸出浓度超过了标准限值。超过5%和90%的砷以酸可溶态和可氧化态赋存,这解释了硫化砷渣砷浸出毒性高、环境活性强的原因。本研究为铜和铅锌冶炼企业的硫化砷渣的处置提供了全面的信息参考。  相似文献   

16.
采用氢氧化钠-硫化钠浸出体系对高砷烟尘进行脱砷研究,在氢氧化钠与高砷烟尘质量比为0.5、硫化钠与高砷烟尘的质量比为0.2、液固质量比为5:1、反应温度为90℃、反应时间为2.0 h、搅拌速度为400 r/min条件下,砷的浸出率为89.64%,锑的浸出率为10.11%,铅的浸出率为1.16%,浸出渣中砷的含量为0.89%。碱浸液采用氧化-冷却结晶回收砷酸钠,结晶母液补加适量氢氧化钠和硫化钠返回浸出过程中循环利用,浸出渣可以直接返回铅厂回收铅锑。整个脱砷工艺闭路循环,实现了高砷烟尘中砷与其他金属的有效分离。  相似文献   

17.
针对含锗锌浸出渣处理过程中存在有价金属回收率低、工艺复杂等问题,本文提出了Ⅰ段控铁低酸加压浸出-Ⅱ段深度高酸加压浸出的两段逆流加压酸浸工艺。深入研究了Ⅱ段深度高酸加压浸出过程中载锌、锗复杂物相解离机理以及锌、锗、铁等有价金属的深度浸出行为。结果表明:升高反应温度、延长反应时间、增加氧分压不仅能促进载锌、锗铁酸盐(MeFe2O4, Me=Zn, Ge)复杂物相的高效解离,也有利于Fe(Ⅲ)水解沉淀反应的发生,浸出渣物相组成由以铁酸盐为主逐步演变为以铁矾为主;酸度是影响铁酸盐热力学优势区的重要因素,其热力学稳定性随体系酸度的升高而逐渐降低,酸度过高时铁的溶解速率大于其沉淀速率,同时因H+活性增强抑制了Fe(Ⅲ)水解生成黄钾铁矾反应的发生。在反应温度150℃、初始酸度100 g/L、反应时间180 min、氧分压0.4 MPa、搅拌转速500 r/min的优化技术条件下,锌、锗的浸出率分别为92.47%、61.33%,获得的浸出终渣中主要物相为铁矾、硫酸钙,其含锌、锗、铅、银、硫分别为1.41%、370.00 g/t、3.52%、150 g/t、1...  相似文献   

18.
针对某复杂难处理金精矿火法熔炼造锍产生的高锑烟尘,进行了湿法综合处理工艺研究。采用XRD、SEM对高锑烟尘进行了物相组成分析和微观形貌表征。以盐酸为浸出剂分离烟尘中的砷、锑、铅、锌等元素,得到含杂较低的高品位金精矿,并对所得金精矿通过静态富氧焙烧-酸浸除杂-氰化浸出工艺回收金银等贵金属。结果表明:高锑烟尘主要由Sb_2O_3和As_2O_3物相组成,锑、砷含量分别为31.18%和9.95%;该烟尘由粒度较细、大小较均匀颗粒物所组成;在盐酸浓度为4 mol/L、浸出液固质量比为5.0、温度为85℃条件下搅拌浸出2 h,浸出渣率为13.65%,浸出渣中砷、锑、铅和锌的品位分别为0.52%、0.60%、0.06%和0.49%;所得金精矿静态富氧焙烧脱硫率为98.81%,焙砂酸浸渣中金品位达到116.9 g/t,金的氰化浸出率达到98%。通过该工艺处理复杂难处理金精矿火法冶炼所得高锑烟尘,实现了烟尘中杂质元素的高效分离,有价元素得到有效回收。  相似文献   

19.
采用物质流分析方法对铜火法冶炼过程铜和砷的代谢进行分析,建立铜和砷的物质平衡表及物质流图.采用直接回收率、废物循环率和资源效率等指标评价流程代谢效率.结果表明,该流程铜资源效率为97.58%,在熔炼、吹炼和精炼单元过程铜的直接回收率分别为91.96%、97.13%和99.47%.同时,生产1 t金属铜有10 kg砷进入...  相似文献   

20.
Pb/Zn冶炼废渣中有价金属生物浸出条件优化   总被引:3,自引:0,他引:3  
为提高生物浸出Pb/Zn冶炼废渣中有价金属的浸出率,利用正交设计,通过摇瓶实验,研究微生物浸出某Pb/Zn冶炼废渣过程中温度、pH值、废渣浓度及浸出时间等对废渣中Cu,Zn,In,Ga,Pb和Ag等有价金属浸出的影响。结果表明,在pH值为1.5、废渣浓度为5%、温度为65℃的优化浸出条件下生物浸出4d,Pb/Zn冶炼废渣中有价金属Cu,Zn,In和Ga的浸出率分别达到95.5%,93.5%,85.0%和80.2%,而Pb和Ag则主要以硫酸铅、黄钾铁矾类物质或硫化银形式富集在余渣中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号