首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
We studied whether a chronic neuropathy induced by unilateral spinal nerve ligation changes the response characteristics of spinal dorsal horn wide-dynamic range (WDR) neurons or their periaqueductal gray (PAG)-induced descending modulation. Experiments were performed in rats with behaviorally demonstrated allodynia induced by spinal nerve ligation and in a group of nonneuropathic control rats. The stimulus-response functions of WDR neurons for mechanical and thermal stimuli and the modulation of their peripherally evoked responses by electrical stimulation of the PAG were determined under pentobarbital anesthesia. The results showed that neuropathy caused a significant leftward shift in stimulus-response functions for mechanical stimuli. In contrast, stimulus-response functions for noxious heat stimuli in the neuropathic limb were, if anything, shifted rightward, although this shift was short of statistical significance. In neuropathic rats, PAG stimulation produced a significantly stronger attenuation of spinal neuronal responses induced by noxious heat in the unoperated than in the operated side. At the intensity that produced attenuation of noxious heat stimuli, PAG stimulation did not produce any significant change in spinal neuronal responses evoked by mechanical stimuli either from the operated or the nonoperated hindlimb of the neuropathic rats. Spontaneous activity of WDR neurons was higher in the operated side of neuropathic rats than in control rats. Afterdischarges evoked by peripheral stimuli were observed in 1/16 of the WDR neurons ipsilateral to spinal nerve ligation and not at all in other experimental groups. The WDR neurons studied were not activated by innocuous or noxious cold stimuli. The results indicate that spinal nerve ligation induces increased spontaneous activity and enhanced responses to mechanical stimuli in the spinal dorsal horn WDR neurons, whereas noxious heat-evoked responses are not significantly changed or if anything, attenuated. Moreover, the inhibition of noxious heat stimuli by PAG stimulation is attenuated in the neuropathic side. It is proposed that the observed changes in the response characteristics of the spinal dorsal horn WDR neurons and in their descending modulation may contribute to the neuropathic symptoms in these animals.  相似文献   

2.
Carrageenan was used to study inflammation-induced changes in spinal nociception and its brain stem modulation in the pentobarbitone-anesthetized rat. Carrageenan was administered intraplantarly into one hindpaw 2 h before the start of electrophysiological single unit recordings of wide-dynamic range (WDR) neurons of the spinal dorsal horn. Carrageenan produced a significant leftward shift in the stimulus-response function for mechanical stimuli, whereas that for noxious heat stimuli was short of statistical significance. Conditioning electrical stimulation in the rostroventromedial medulla (RVM) significantly attenuated noxious heat-evoked, but not mechanically evoked, responses to spinal dorsal horn WDR neurons in the control (contralateral) side. However, in the carrageenan-treated side RVM stimulation had no significant effect on mechanically or noxious heat-evoked responses. Following direct spinal administration of neuropeptide FF (NPFF), noxious heat-evoked responses, but not mechanically evoked responses, were attenuated by RVM-stimulation also in the carrageenan-treated side. This selective NPFF-induced enhancement of brain stem-spinal inhibition was not reversed by naloxone. The results indicate that carrageenan-induced inflammation significantly changes the response properties of spinal nociceptive neurons and their brain stem-spinal modulation. During inflammation, NPFF in the spinal cord produces a submodality-selective potentiation of the antinociceptive effect induced by brain stem-spinal pathways, independent of naloxone-sensitive opioid receptors.  相似文献   

3.
The effects of nitrous oxide (75%) on the spinal dorsal born wide dynamic range (WDR) neuronal activity were studied in either spinal cord intact or spinal cord-transected cats. Extracellular activity was recorded in the dorsal horn from single WDR neurons responding to noxious and non-noxious stimuli applied to the cutaneous receptive fields on the left bind foot pads of intact or decerebrate, spinal cord-transected (L 1-2) cats. The experiment was divided into four sections as follows: (1) When 10 micrograms of bradykinin (BK) was injected into the femoral artery ipsilateral to the recording site as the noxious test stimulus in the spinal cord-transected cat, all of 6 WDR neurons gave excitatory responses which were not depressed by 75% nitrous oxide. (2) When the injection of 10 micrograms of BK into the femoral artery ipsilateral to the recording site was used in the spinal cord-intact cat, 6 of 15 WDR neurons (40%) gave excitatory responses, which were significantly depressed by 75% nitrous oxide, and 9 of 15 WDR neurons (60%) gave inhibitory responses, which were not affected by 75% nitrous oxide. (3) When 10 micrograms of bradykinin (BK) was injected into the femoral artery contralateral to the recording site as the noxious test stimulus in the spinal cord transected cat, 6 of 12 WDR neurons gave excitatory reasons, which were not depressed by 75% nitrous oxide. (4) When the injection of 10 micrograms of BK into the femoral artery contralateral to the recording site was used in the spinal cord-intact cat, 6 of 6 WDR neurons (100%) gave responses, which were affected by 75% nitrous oxide. We have observed that nitrous oxide reduces the excitation and inhibition of dorsal born WDR neuronal activities induced by BK injection in spinal cord-intact cats, but does not reduce the excitation of those in spinal cord-transected cats. This finding confirmed that the antinociceptive effect of nitrous oxide might be modulated by supraspinal descending inhibitory control systems. In addition our result showed that the supraspinal effect of nitrous oxide was mediated not only by an increase but also a decrease in a supraspinal descending inhibition.  相似文献   

4.
Histamine elicits the sensation of itch at the site of skin application as well as alloknesis (itch elicited by innocuous mechanical stimuli) in a surrounding area in humans and expansion of the low-threshold mechanosensitive receptive field area of spinal wide dynamic range (WDR)-type dorsal horn neurons in rats. We presently tested if the histamine-evoked expansion of neuronal receptive field area depends on a spinal N-methyl-D-aspartate (NMDA) receptor-mediated process. In pentobarbital sodium-anesthetized rats, mechanical receptive field areas of single WDR-type dorsal horn neurons were mapped with graded von Frey filaments before and 10 min after intracutaneous (ic) microinjection of histamine (1 microl; 1, 3, or 10%) at a low-threshold site within the receptive field. Intracutaneous microinjection of histamine evoked dose-related increases in firing rate, as well as a dose-dependent expansion in mean receptive field area 10 min after 3 and 10%, but not 1%, histamine doses. When a noncompetitive or competitive NMDA receptor antagonist dizocilpine [MK-801; D(-)-2-amino-5-phosphonovalerate (APV), respectively; 1 microM] was first applied topically to the surface of the spinal cord, there was no significant change in mean receptive field area after ic microinjection of 10% histamine. The mean neuronal response to histamine in the presence of spinal MK-801 or APV was not significantly different from the mean response to histamine in the absence of these drugs. These results suggest that spinal NMDA receptors are involved in histamine-induced expansion of mechanical receptive field area, a neural event possibly involved in the development of alloknesis.  相似文献   

5.
This research determined whether fear-conditioned, acoustic stimuli induce thalamic arousal reflected in associative responses in dorsal lateral geniculate nucleus (dLGN) neurons. Rabbits received a Pavlovian discriminative fear conditioning procedure in which one tone conditioned stimulus (CS+) was always paired with an aversive unconditioned stimulus (UCS) and another tone (CS–) was never paired with the UCS. Responses of single dLGN neurons to random CS+ and CS– presentations were then recorded. Nine of 15 recorded neurons demonstrated significantly greater firing during the CS+ versus the CS–. Their spontaneous activity demonstrated tonic firing during increased neocortical arousal and burst firing during decreased neocortical arousal. The results demonstrate that dLGN neurons show associative responses to fear-conditioned, acoustic stimuli and present a model for investigating the neural circuits by which such stimuli affect sensory processing at the thalamic level. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Although cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei have been shown to have a pivotal role in neural mechanisms of paradoxical sleep, their function during wakefulness is less understood. To examine the latter, we have recorded from "broad-spike neurons", which were distinguished by their long spike duration, in the laterodorsal tegmental nucleus of undrugged, head-restrained rats, and examined their response properties to sensory stimuli such as light touch to the tail, air puff to the face, 2 kHz pure tone and flashes of light. Broad-spike neurons from the locus coeruleus and dorsal raphe nucleus were studied for comparison; these neurons have been demonstrated to be noradrenergic and serotonergic, respectively. The broad-spike neurons in the laterodorsal tegmental nucleus have also been suggested to be cholinergic. There were two kinds of responses: (1) a simple increase or decrease in firing, reflecting an elevated level of vigilance; and (2) a phasic response composed of a single spike or brief, high frequency burst, usually diminishing or disappearing upon repetition of the stimulus. When two or more types of stimuli were effective in a neuron, they evoked responses of the same quality. Most of the dorsal raphe neurons displayed only the simple increase of firing, whereas the locus coeruleus neurons gave a phasic response with rather weak attenuation upon repetition. Compared with these, the laterodorsal tegmental neurons were heterogeneous: about one-quarter showing only a simple change of firing (half increasing, half decreasing); and two-thirds displaying phasic responses. The latter response of many neurons attenuated strongly upon repetition. The laterodorsal tegmental neurons were classified into several groups according to their spontaneous firing behavior during sleep and wakefulness, but every neuron in a group did not show the same type of response. For example, some of the neurons which were most active during paradoxical sleep and essentially silent during wakefulness decreased or stopped firing upon sensory stimulation, while others in this group had strong phasic responses. These results suggest that putative cholinergic neurons in the laterodorsal tegmental nucleus have heterogenous properties not only with respect to their spontaneous activity during sleep and wakefulness but also with respect to their response to sensory stimulation. Some of these neurons may function to induce a global attentive state in response to a novel stimulus.  相似文献   

7.
8.
1. The aim of the present study was to determine whether synapses formed by dorsal root afferents that regenerate into intraspinal transplants of fetal spinal cord are functional. Severed L4 or L5 dorsal root stumps were placed at the bottom of dorsal quadrant cavities made in the lumbar spinal cords of adult rats and juxtaposed to embryonic day 14 spinal cord transplants. 2. In animals examined 5-10 weeks later, we recorded extracellularly in transplants from 43 units that fired in response to electrical stimulation of the implanted dorsal root. Latency fluctuations of extracellular firing that increase with stimulus and failure to follow high-frequency and posttetanic potentiation of extracellular firing stimulation suggest that synapses with conventional properties are formed between regenerating afferents and transplant neurons. Limited intracellular recordings confirmed the existence of excitatory postsynaptic potentials in transplant neurons after dorsal root stimulation. 3. In 16 units, extracellular firing occurred in response to single shock stimulation. The remainder of the units required two or more dorsal root shocks to evoke firing; some of these connections also may be monosynaptic. 4. Under the assumption that single shock firing was most likely the result of monosynaptic connections between transplant neurons and regenerated dorsal root fibers, we estimated the conduction velocities of regenerated fibers. These estimates suggest that fibers with conduction velocities in the C, A delta, and A alpha/beta ranges regenerate into transplants of embryonic spinal cord. 5. The results demonstrate that regenerated dorsal root axons establish functional synaptic connections with transplant neurons. The implications for using fetal transplants to help rebuild spinal reflex circuits after spinal cord injury are considered.  相似文献   

9.
The medulla oblongata caudal to the obex was explored for neurons responsive to tooth pulp (TP) stimulation in cats. Four different subclasses of TP neurons were found. The latter included TP specific (TPS) neurons, trigeminal wide dynamic range (trigeminal WDR) neurons with TP input, trigeminal subnucleus reticularis ventralis (trigeminal SRV) neurons with TP input and convergent reticular formation (convergent RF) neurons with TP input. TPS neurons were located in the dorsal marginal rim of the trigeminal subnucleus caudalis, i.e., in the marginal layer or the outer zone of substantia gelatinosa. WDR neurons with TP input were found in the neck region of medullary dorsal horn which corresponds to the lateral part of subnucleus reticularis dorsalis (SRD). Trigeminal SRV neurons with TP input were located in the lateral part of SRV. Convergent RF neurons with TP input were found in the middle third of the caudal bulbar RF consisting of SRD and SRV. Both TPS neurons and WDR neurons with TP input included trigeminothalamic neurons as evidenced by the antidromic activation from the nucleus ventralis posteromedialis of the contralateral thalamus. A significant proportion of both trigeminal SRV and convergent RF neurons with TP input were antidromically activated by stimulation of the nucleus centralis lateralis of the contralateral thalamus. The former two subclasses may subserve the sensory-discriminative aspect of toothache, while the latter two subclasses, the emotional-motivational aspect.  相似文献   

10.
The effects of noxious stimulation of one hindpaw on the dorsal horn wide dynamic range (WDR) neurons activity of the opposite side were examined and compared in rats with chronic constriction of one sciatic nerve (CCI), in intact rats and in sham operated rats. Extracellular recordings, were performed in anesthetized, paralyzed rats in the sciatic spinal cord segments (L5-L6). Both the number and the magnitude of the responses were significantly larger in CCI than in intact and in sham rats. The effect was mainly excitatory, only in a few cases was inhibition observed. The relation of the contralateral increased efficacy with the level of excitability of the target neurons is discussed and a role of the potentiated cross transmission in some contralateral pain disorders is hypothesized.  相似文献   

11.
ATP P2x receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J. Neurophysiol. 80: 3356-3360, 1998. Glutamate is a major fast transmitter between primary afferent fibers and dorsal horn neurons in the spinal cord. Recent evidence indicates that ATP acts as another fast transmitter at the rat cervical spinal cord and is proposed to serve as a transmitter for nociception and pain. Sensory synaptic transmission between dorsal root afferent fibers and neurons in the superficial dorsal horn of the lumbar spinal cord were examined by whole cell patch-clamp recording techniques. Experiments were designed to test if ATP could serve as a transmitter at the lumbar spinal cord. Monosynaptic excitatory postsynaptic currents (EPSCs) were completely abolished after the blockade of both glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and N-methyl--aspartate receptors. No residual current was detected, indicating that glutamate but not ATP is a fast transmitter at the dorsal horn of the lumbar spinal cord. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a selective P2x receptor antagonist, produced an inhibitory modulatory effect on fast EPSCs and altered responses to paired-pulse stimulation, suggesting the involvement of a presynaptic mechanism. Intrathecal administration of PPADS did not produce any antinociceptive effect in two different types of behavioral nociceptive tests. The present results suggest that ATP P2x2 receptors modulate excitatory synaptic transmission in the superficial dorsal horn of the lumbar spinal cord by a presynaptic mechanism, and such a mechanism does not play an important role in behavioral responses to noxious heating. The involvement of other P2x subtype receptors, which is are less sensitive to PPADS, in acute nociceptive modulation and persistent pain remains to be investigated.  相似文献   

12.
Activation of neurons in the midbrain periaqueductal gray (PAG) inhibits spinal dorsal horn neurons and produces behavioral antinociception in animals and analgesia in humans. Although dorsal horn regions modulated by PAG activation contain all three opioid receptor classes (mu, delta, and kappa), as well as enkephalinergic interneurons and terminal fields, descending opioid-mediated inhibition of dorsal horn neurons has not been demonstrated. We examined the contribution of dorsal horn mu-opioid receptors to the PAG-elicited descending modulation of nociceptive transmission. Single-unit extracellular recordings were made from rat sacral dorsal horn neurons activated by noxious heating of the tail. Microinjections of bicuculline (BIC) in the ventrolateral PAG led to a 60-80% decrease in the neuronal responses to heat. At the same time, the responses of the same neurons to iontophoretically applied NMDA or kainic acid were not consistently inhibited. The inhibition of heat-evoked responses by PAG BIC was reversed by iontophoretic application of the selective mu-opioid receptor antagonists, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). A similar effect was produced by naloxone; however, naloxone had an excitatory influence on dorsal horn neurons in the absence of PAG-evoked descending inhibition. This is the first demonstration that endogenous opioids acting via spinal mu-opioid receptors contribute to brain stem control of nociceptive spinal dorsal horn neurons. The inhibition appears to result in part from presynaptic inhibition of afferents to dorsal horn neurons.  相似文献   

13.
Single-unit recordings were made in the intact anesthetized rat of the responses of dorsal horn neurons to C-, Adelta-, and Abeta-fiber stimulation. The postdischarge and windup responses of the same cells along with responses to innocuous stimuli, prod and brush, also were measured. The effects of (-)-bicuculline-methobromide (0.5, 5, 50, and 250 microg) were observed on these neuronal responses. The C- and Adelta-fiber-evoked responses were facilitated significantly in a dose-dependent manner. The input was facilitated, but as the final overall response was not increased by the same factor, windup appeared to be reduced. However, postdischarge, resulting from the increase in the excitability produced by windup, tended to be facilitated. After doses of >/=5 microg bicuculline, stimulation at suprathreshold Abeta-fiber-evoked activity caused enhanced firing, mainly at later latencies corresponding to Adelta-fiber-evoked activity in normal animals. Few cells responded consistently to brush and so no significant change was observed. Responses evoked by innocuous pressure (prod) always were observed in cells that concurrently responded to electrical stimulation with a C-fiber response. This tactile response was facilitated significantly by bicuculline. The effects of N6-cyclopentyladenosine (N6-CPA), an adenosine A1-receptor agonist, was observed after pretreatment with 50 microg bicuculline, as were the effects of morphine and 7-chlorokynurenate (7-CK). N6-CPA inhibited prod, C- and Adelta-fiber-evoked responses as well as the initial and overall final response to the train of C-fiber strength stimuli. Inhibitions were reversed with 8(p-sulphophenyl) theophylline. Morphine, the mu-receptor agonist, also inhibited the postbicuculline responses to prod, C-, and Adelta-fiber responses and initial and final responses to a train of stimuli. Inhibitory effects of morphine were reversed partly by naloxone. 7-CK, an antagonist at the glycine site on the N-methyl-D-aspartate-receptor complex, inhibited the responses to C- and Adelta-fiber-evoked activity as well as prod. The postdischarges were inhibited by this drug. Again both the initial and overall responses of the cell were inhibited. To conclude, bicuculline caused an increase in the responses of deep dorsal horn cells to prod, Adelta-fiber-evoked activity, increased C-fiber input onto these cells along with the appearance of responses at latencies normally associated with Adelta fibers, but evoked by suprathreshold Abeta-fiber stimulation. These alterations may be responsible for some aspects of the clinical phenomenon of allodynia and hyperalgesia. These altered and enhanced responses were modulated by the three separate classes of drugs, the order of effectiveness being 7-CK, N6-CPA, and then morphine.  相似文献   

14.
A combination of intracellular electrophysiological recording and injection of horseradish peroxidase with ultrastructural immunocytochemistry was used to investigate the synaptic interplay between substance P- and enkephalin-immunoreactive axonal boutons and three types of functionally characterized dorsal horn neurons in the cat spinal cord. The dorsal horn neurons were classified as nociceptive specific, wide dynamic range and non-nociceptive based on their responses to innocuous and noxious stimuli. Most of the nociceptive neurons (either nociceptive specific or wide dynamic range) contained enkephalin immunoreactivity, but none of the non-nociceptive neurons were positive for enkephalin. Three types of immunoreactive boutons were found in contact with the functionally characterized dorsal horn neurons. These boutons were positive for either substance P, enkephalin, or substance P+enkephalin. Quantitative analysis revealed that the percentages of substance P-immunoreactive boutons apposed to the cell bodies, proximal dendrites and distal dendrites of nociceptive neurons were significantly higher than those of non-nociceptive neurons. Furthermore, the percentages of substance P+enkephalin-immunoreactive axonal boutons apposed to the distal dendrites of nociceptive neurons were significantly higher than those of non-nociceptive neurons and the percentages of enkephalin-immunoreactive boutons apposed to the cell bodies and proximal dendrites of nociceptive neurons were significantly higher than in non-nociceptive neurons. Finally, neither enkephalin-immunoreactive nor substance P+enkephalin-immunoreactive boutons were ever seen presynaptic to substance P-immunoreactive boutons. These results provide evidence of an anatomical substrate within the dorsal horn for the interaction of substance P-mediated with enkephalin-mediated mechanisms. The data support the idea that the modulation of nociceptive input in the dorsal horn by enkephalinergic neurons occurs mainly via a postsynaptic mechanism, and thus suggest that dorsal horn enkephalinergic neurons participate in a local inhibitory feedback loop in a distinct pathway from the previously postulated opioid-mediated depression of substance P release from primary afferent terminals.  相似文献   

15.
BACKGROUND: The spinal cord appears to be the site where anesthetic agents prevent movement in response to noxious stimuli. When isoflurane is differentially delivered to the head and torso (with low torso concentrations), cranial anesthetic requirements increase compared with systemic administration. The aim of the current study was to test the hypothesis that isoflurane action in the brain has descending influences on spinal cord dorsal horn neurons. A secondary aim was to determine the association, if any, of high cranial concentrations of isoflurane (>6%) with dorsal horn activity. METHODS: Ten goats were anesthetized with isoflurane and the carotid arteries and jugular veins isolated and cannulated for cerebral bypass. A laminectomy was performed for recording from single lumbar dorsal horn neurons with hind limb mechanical receptive fields (one cell per goat). A standard noxious mechanical stimulus was applied to the dew claw or hoof bulb during a control period with end-tidal isoflurane at 1.3% and during bypass with the following head/torso isoflurane concentrations: 1.3%/1.3%, 3.2%/1.3%, 9.4%/1.3%, 1.3%/0.2%, 3.0%/0.2% and 8.8%/0.3%. RESULTS: When torso isoflurane concentration was 1.3%, increasing cranial isoflurane concentration to 3% or 9% had no significant effect on the activity of dorsal horn units. When torso isoflurane was 0.2-0.3%, spontaneous activity increased; however, at these torso concentrations, evoked responses were significantly decreased (-60%) only when cranial isoflurane concentration was increased to 9%. CONCLUSIONS: Isoflurane action in the brain had an inhibitory effect on dorsal horn activity with the combination of supraclinical cranial and low torso concentrations.  相似文献   

16.
Deep dorsal horn neurons (DHNs) involved in nociception can relay long-lasting inputs and generate prolonged afterdischarges believed to enhance the transfer of nociceptive responses to the brain. We addressed the role of neuronal membrane properties in shaping these responses, by recording lamina V DHNs in a slice preparation of the rat cervical spinal cord. Of 256 neurons, 102 produced accelerating discharges in response to depolarizing current pulses, whereas the other neurons showed spike frequency adaptation. Two mechanisms mediated the firing acceleration: a slow inactivation of a K+ current expressed upon activation of the neuron from hyperpolarized holding potentials, and the expression of a regenerative plateau potential activating around resting membrane potential. The increase in firing frequency was much stronger when sustained by the plateau potential (71 DHNs, 28%). A few neurons produced adaptation and both types of acceleration, in different membrane potential domains, showing that the firing pattern of a deep DHN is not a rigid characteristic. Plateau potentials could be elicited by stimulation of nociceptive primary afferent fibres. The bistability associated with plateau potentials permitted afterdischarges. Because plateau potentials had slow activation kinetics and were voltage-dependent, the neurons had non-linear input-output relationships in both the amplitude and time domains. Nociceptive primary afferent stimulation elicited intense and prolonged responses in plateau-generating DHNs, while brief bursts of spikes were evoked otherwise. These results indicate that in a population of deep DHNs, intense firing and prolonged afterdischarges in response to nociceptive stimulation depend on non-linear intrinsic membrane properties.  相似文献   

17.
A model of lamina III-IV dorsal horn cell receptive fields (RFs) has been developed to visualize the spatial patterns of cells activated by light touch stimuli. Low-threshold mechanoreceptive fields (RFs) of 551 dorsal horn neurons recorded in anesthetized cats were characterized by location of RF center in cylindrical coordinates, area, length/width ratio, and orientation of long axis. Best-fitting ellipses overlapped actual RFs by 90%. Exponentially smoothed mean and variance surfaces were estimated for these five variables, on a grid of 40 points mediolaterally by 20/segment rostrocaudally in dorsal horn segments L4-S1. The variations of model RF location, area, and length/width ratio with map location were all similar to previous observations. When elliptical RFs were simulated at the locations of the original cells, the RFs of real and simulated cells overlapped by 64%. The densities of cell representations of skin points on the hindlimb were represented as pseudocolor contour plots on dorsal view maps, and segmental representations were plotted on the standard views of the leg. Overlap of modeled and real segmental representations was at the 84% level. Simulated and observed RFs had similar relations between area and length/width ratio and location on the hindlimb: r(A) = 0.52; r(L/W) = 0.56. Although the representation of simple stimuli was orderly, and there was clearly only one somatotopic map of the skin, the representation of a single point often was not a single cluster of active neurons. When two-point stimuli were simulated, there usually was no fractionation of response zones or addition of new zones. Variation of stimulus size (area of skin contacted) produced less variation of representation size (number of cells responding) than movement of stimuli from one location to another. We conclude that stimulus features are preserved poorly in their dorsal horn spatial representation and that discrimination mechanisms that depend on detection of such features in the spatial representation would be unreliable.  相似文献   

18.
The avian visual "Wulst" is a target of the ascending thalamofugal visual pathway. In pigeons (Columba livia), lesion damage to the Wulst has little effect on simple visual discriminations, but impairs performance on tasks such as reversal learning. We recorded the responses of single Wulst neurons as pigeons were trained on the acquisition and subsequent reversal of a visual discrimination. Of the 64 units recorded, 54 (84%) displayed a significant difference in firing rate between some component of the task and the intertrial interval that separated trials. More important, 14 units (22%) displayed a significant change in firing rate exclusively to the S+ and/or S- as learning progressed either during acquisition or reversal. The responses of these 14 neurons indicate that learning during initial acquisition was as likely to correlate with a change in firing rate as during reversal, and some neuronal responses could be characterized as representing reward properties together with visual stimulus features. As such, responses of pigeon Wulst neurons indicate a role in representing aspects of learning as much as the physical/perceptual properties of visual stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Both accidental and experimental lesions of the spinal cord suggest that neuronal processes occurring in the spinal cord modify the relay of information through the dorsal column-lemniscal pathway. How such interactions might occur has not been adequately explained. To address this issue, the receptive fields of mechanosensory neurons of the dorsal column nuclei were studied before and after manipulation of the spinal dorsal horn. After either a cervical or lumbar laminectomy and exposure of the dorsal column nuclei in anesthetized cats, the representation of the hindlimb or of the forelimb was defined by multiunit recordings in both the dorsal column nuclei and in the ipsilateral spinal cord. Next, a single cell was isolated in the dorsal column nuclei, and its receptive field carefully defined. Each cell could be activated by light mechanical stimuli from a well-defined cutaneous receptive field. Generally the adequate stimulus was movement of a few hairs or rapid skin indentation. Subsequently a pipette containing either lidocaine or cobalt chloride was lowered into the ipsilateral dorsal horn at the site in the somatosensory representation in the spinal cord corresponding to the receptive field of the neuron isolated in the dorsal column nuclei. Injection of several hundred nanoliters of either lidocaine or cobalt chloride into the dorsal horn produced an enlargement of the receptive field of the neuron being studied in the dorsal column nuclei. The experiment was repeated 16 times, and receptive field enlargements of 147-563% were observed in 15 cases. These data suggest that the dorsal horn exerts a tonic inhibitory control on the mechanosensory signals relayed through the dorsal column-lemniscal pathway. Because published data from other laboratories have shown that receptive field size is controlled by signals arising from the skin, we infer that the control of neuronal excitability, receptive field size and location for lemniscal neurons is determined by tonic afferent activity that is relayed through a synapse in the dorsal horn. This influence of dorsal horn neurons on the relay of mechanosensory information through the lemniscal pathways must modify our traditional views concerning the relative independence of these two systems.  相似文献   

20.
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. The mu-opioid receptor was closely associated with the somatic plasmalemma of the dorsal root ganglion neurons. Both mu-opioid receptor-immunoreactive nerve fibers and cell bodies were observed in lamina II of the dorsal horn. The highest intensity of mu-opioid receptor-like immunoreactivity was observed in the deep part of lamina II. Most mu-opioid receptor-like immunoreactivity in the dorsal horn originated from spinal neurons. A few mu-opioid receptor-positive peripheral afferent terminals in the rat and monkey dorsal horn were calcitonin gene-related peptide-immunoreactive. In addition to pre- and post-junctional receptors in rat and monkey dorsal horn neurons, mu-opioid receptors were localized on the presynaptic membrane of some synapses of primary afferent terminals in the monkey dorsal horn. Peripheral axotomy caused a reduction in the number and intensity of mu-opioid receptor-positive neurons in the rat and monkey dorsal root ganglia, and of mu-opioid receptor-like immunoreactivity in the dorsal horn of the spinal cord. The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号