首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper presents a methodology to include obstacles moving with uncertainty in path planning algorithms. Around each moving obstacle, a collision zone is defined indicating a high collision likelihood space. These zones are treated as stationary obstacles providing the input to a path planning algorithm. Samples of moving obstacles' positions are assumed to be available. Three models of motion for moving obstacles are considered: (1) obstacles moving randomly, (2) obstacles whose motion is structured but consists of random parameters, (3) obstacles whose motion is predictable as a function of time. Simulation examples yielding collision zones are presented.  相似文献   

2.
This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.  相似文献   

3.
Navigation and motion control of autonomous mobile robots require an on-line, real-time sensory feedback system to guide robots to stay on planned path, to avoid unexpected obstacles, to return to planned path if a detour is necessary, and even to replan the path. This problem is a difficult one, because of incomplete world knowledge and unknown obstacles. A spherical sensory model similar to human perception is presented. Its spherical octree data structure provides an efficient and unified representation scheme for multisensor fusion, navigation, motion control, and spatial reasoning.  相似文献   

4.
针对动态多目标围捕,提出了一种复杂环境下协同自组织多目标围捕方法.首先设计了多目标在复杂环境下的运动模型,然后通过对生物群体围捕行为的研究,构建了多目标简化虚拟受力模型.基于此受力模型和提出的动态多目标自组织任务分配算法,提出了群机器人协同自组织动态多目标围捕算法,这两个算法只需多目标和个体两最近邻位置信息以及个体面向多目标中心方向的两最近邻任务信息,计算简单高效,易于实现.接着获得了系统稳定时参数的设置范围.由仿真可知,所提的方法具有较好的灵活性、可扩展性和鲁棒性.最后给出了所提方法相较于其它方法的优势.  相似文献   

5.
We present an interactive method that allows animated characters to navigate through cluttered environments. Our characters are equipped with a variety of motion skills to clear obstacles, narrow passages, and highly constrained environment features. Our control method incorporates a behavior model into well‐known, standard path planning algorithms. Our behavior model, called deformable motion, consists of a graph of motion capture fragments. The key idea of our approach is to add flexibility on motion fragments such that we can situate them into a cluttered environment via constraint‐based formulation. We demonstrate our deformable motion for realtime interactive navigation and global path planning in highly constrained virtual environments.  相似文献   

6.
A dynamic motion primitive (DMP) is a robust framework that generates obstacle avoidance trajectories by introducing perturbative terms. The perturbative term is usually constructed with an artificial potential field (APF) method. Dynamic obstacle avoidance is rarely considered with this approach; furthermore, even when dynamic obstacles are considered, only the velocity and position information of the current state are incorporated into the obstacle avoidance framework. However, if the position of an obstacle changes suddenly, a robot may be placed in a dangerous position close to the obstacle, resulting in large obstacle avoidance accelerations, sharp trajectories, or even obstacle avoidance failure. Therefore, we present a model predictive obstacle avoidance method based on dynamic motion primitives and a Kalman filter. This method has three main components: Dynamic motion primitives are used to generate the desired trajectory and introduce perturbations to achieve obstacle avoidance; the Kalman filter method is adopted to estimate the future positions of the obstacles; and model predictive control is employed to optimize the repulsive force generated by the APF while minimizing the defined cost function, thus guaranteeing the safety and flexibility of the method. We validate the presented method with 2D and 3D obstacle avoidance simulations. The method is also verified with a real robot: the-Kinova MOVO. The simulation and experimental results show that the proposed method not only avoids dynamic obstacles but also tracks the desired trajectory more smoothly and precisely.  相似文献   

7.
仿生跳跃机器人具备很强的越障和环境适应能力,但是由于机器人运动过程中较短的可控时间以及腾空阶段运动的不确定性,运动的稳定性对于仿生跳跃机器人至关重要.本文对仿袋鼠机器人跳跃运动过程中的稳定跳跃控制问题进行了研究.首先采用双质量弹簧负载倒立摆模型(spring-loaded inverted pendulum,SLIP)模型对袋鼠机器人的结构进行简化,建立了机器人系统的动力学模型,并对机器人的运动过程以及着地相与腾空相的切换条件进行了分析.然后采用解耦控制的思想,将SLIP模型的运动控制分解为水平速度控制和跳跃高度控制两个方面,分别通过控制着地角度实现对水平运动速度的控制,通过能量补偿实现对跳跃高度的控制.最后在ADAMS仿真环境中建立机器人模型并进行了机器人运动仿真实验.实验结果表明,本文提出的方法可以实现仿袋鼠机器人稳定的周期性跳跃运动.  相似文献   

8.
Most motion planning algorithms have dealt with motion in a static workspace, or more recently, with motion in a workspace that changes in a known manner. We consider the problem of finding collision-free motions in a changeable workspace. That is, we wish to find a motion for an object where the object is permitted to move some of the obstacles. In such a workspace, the final positions of the movable obstacles may or may not be part of the goal. In the case where the final positions of the obstacles are specified, the general problem is shown to be PSPACE-hard. In the case where the final positions of the obstacles are unspecified, the motion planning problem is shown to be NP-hard. Algorithms that run inO(n 3) time are presented for the case where there is only one movable obstacle in a polygonal environment withn corners and the object to be moved and the obstacle are convex polygons of constant complexity.  相似文献   

9.
李永成  张钹 《自动化学报》1993,19(6):656-662
本文基于运动规划的拓扑方法,针对机械手的装配环境,提出了一种能应付突发意外事件-即能躲避突发障碍继续到达目标位置的运动规划方法,该方法主要包含三部分:用已知信息进行运动规划;遇到突发障碍后进行局部调整;局部调整失败时进行全局重规划,本文给出一种运动规划器ETTMP,经实验测试,该规划器具有较强的鲁棒性和实时性,为智能机器人的实用化研究提供了一种方法。  相似文献   

10.
Dynamic Motion Planning using a distributed representation   总被引:2,自引:0,他引:2  
Methods for dynamic motion planning are presented which take into account not only geometric environmental constraints but also physical constraints on motion. The approach uses a distributed representation which allows parallel implementation of the using a cellular strength-diffusion method in the search for the motion in space-time. We consider three cases: (1) no knowledge of the motion of the obstacles is assumed so that the planning is purely reactive; (2) full knowledge of the moving obstacles is available so that the planner can deliver an optimal motion; and (3) an interleaved algorithm in which the ability to predict a short time ahead (based on an assumption of simple linear motion of the obstacles) is exploited. This last algorithm emphasizes the importance of the interaction between the planner and the environment via sensors. We conclude that to plan motion in a dynamic environment in which uncertainties abound, the only sensible strategy is to constantly sense the world and plan the motion accordingly.The experimental work reported here was carried out while the authors were at Department of Computer Science, Queen Mary and Westfield College, University of London.  相似文献   

11.
This paper deals with a navigation algorithm for swarm robot systems in which multiple mobile robots work together. The motion of each mobile robot is modeled in such a way to have more inputs than the number of outputs. The null-space projection method of this model is employed to resolve the motion of the swarm robot system while avoiding obstacles. The feasibility of the proposed navigation algorithm is verified through a simulation study using several swarm robot models.  相似文献   

12.
Algorithmic motion planning in robotics   总被引:1,自引:0,他引:1  
Sharir  M. 《Computer》1989,22(3):9-19
A survey is presented of an approach to motion planning that emphasizes object-oriented, exact, and discrete (or combinatorial) algorithmic techniques in which worst-case asymptotically efficient solutions are being sought. Following a statement of the problem, motion planning in static and known environments is treated. The discussion covers general solutions, lower bounds, the projection method, the retraction method, the expanded obstacles, the single-component approach, and a mobile convex object moving in a 2D polygonal space. Variants of the motion-planning problem are then considered, namely, optimal motion planning, adaptive and exploratory motion planning, motion planning in the presence of moving obstacles, constrained motion planning, motion planning with uncertainty, and general task planning  相似文献   

13.
障碍距离检测是移动机器人导航的关键问题之一。为了实现精确实时的障碍检测,针对某二维TOF激光雷达,对其数据标定、物体表面的属性、混合像素等因素进行试验,评估了其测距性能。同时,通过移动机器人运行过程中激光雷达的测距数据分析,设计了动态自适应滤波器以消除障碍检测中的测距噪声干扰。运行过程中的障碍检测试验表明:该方法可以实现可靠的障碍检测,并为移动机器人导航中环境建模、自定位及路径规划提供支持。  相似文献   

14.
A 6-degrees-of-freedom serial arm hand is controlled to move toward an object in an unseen environment. We developed a consciousness-based architecture (CBA), which is a hierarchical human development model representing the relationship between consciousness and behavior and is used for imitating a human groping action. During forward motion toward the object, a robot arm hand can help to avoid obstacles from which the robot collects contact information. The CBA organizes such information to learn a path plan for backward motion to the origin without contact with the obstacles. Experimental results show that the CBA successfully extends the hand to the goal while avoiding any obstacle. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

15.
为了更好地解决移动机器人在未知环境下的自主避障问题,采用多传感器信息融合的方法,通过多个超声传感器对障碍物信息进行采集。合理确立模糊控制器的输入输出,通过模糊推理将障碍物距离信息模糊化,建立模糊规则并解模糊,以达到对移动机器人的安全避障的控制。通过建立移动机器人运动模型,设计了仿真平台,得到实验结果表明:该算法具有良好的可行性。  相似文献   

16.
This paper presents a real-time path planning algorithm that guarantees probabilistic feasibility for autonomous robots with uncertain dynamics operating amidst one or more dynamic obstacles with uncertain motion patterns. Planning safe trajectories under such conditions requires both accurate prediction and proper integration of future obstacle behavior within the planner. Given that available observation data is limited, the motion model must provide generalizable predictions that satisfy dynamic and environmental constraints, a limitation of existing approaches. This work presents a novel solution, named RR-GP, which builds a learned motion pattern model by combining the flexibility of Gaussian processes (GP) with the efficiency of RRT-Reach, a sampling-based reachability computation. Obstacle trajectory GP predictions are conditioned on dynamically feasible paths identified from the reachability analysis, yielding more accurate predictions of future behavior. RR-GP predictions are integrated with a robust path planner, using chance-constrained RRT, to identify probabilistically feasible paths. Theoretical guarantees of probabilistic feasibility are shown for linear systems under Gaussian uncertainty; approximations for nonlinear dynamics and/or non-Gaussian uncertainty are also presented. Simulations demonstrate that, with this planner, an autonomous vehicle can safely navigate a complex environment in real-time while significantly reducing the risk of collisions with dynamic obstacles.  相似文献   

17.
《Advanced Robotics》2013,27(5):491-505
Motion planning is studied in a time-varying environment. The environment contains a set of obstacles that have cyclic (i.e. repeated) motions. Cyclic motion is a generalization over simpler motion patterns such as straight-line motions and is capable of representing much more complex and realistic time-varying environments than those previously considered. In our model, the destination point is also allowed to have a cyclic motion. Two methods are presented for generating a collision-free path and their convergence property is established. The first method is suited for sensor-based navigation while the second method is an algorithm for gross motion planning. Computer simulation is presented to demonstrate the feasibility of our approach.  相似文献   

18.
针对障碍环境下具有非完整约束月球车的运动规划问题,提出了一种基于离散化位姿的月球车运动规划方法。该方法首先将月球车的运动轨迹限定于多项式旋线,通过求解多项式旋线参数生成无障碍条件下连接任意位姿状态的运动轨迹。同时,该方法对月球车运动规划问题中的位姿状态空间进行离散化,形成离散化的位姿状态空间。根据离散化位姿状态空间的特点,在离线的条件下生成连接相邻离散位姿的月球车基本的运动轨迹集。最后该方法结合基本运动轨迹集并利用启发式搜索算法最终解决障碍条件下的运动规划问题。基于动力学仿真平台中的实验结果验证了该方法的正确性和有效性。  相似文献   

19.
For autonomous vehicles to achieve terrain navigation, obstacles must be discriminated from terrain before any path planning and obstacle avoidance activity is undertaken. In this paper, a novel approach to obstacle detection has been developed. The method finds obstacles in the 2D image space, as opposed to 3D reconstructed space, using optical flow. Our method assumes that both nonobstacle terrain regions, as well as regions with obstacles, will be visible in the imagery. Therefore, our goal is to discriminate between terrain regions with obstacles and terrain regions without obstacles. Our method uses new visual linear invariants based on optical flow. Employing the linear invariance property, obstacles can be directly detected by using reference flow lines obtained from measured optical flow. The main features of this approach are: (1) 2D visual information (i.e., optical flow) is directly used to detect obstacles; no range, 3D motion, or 3D scene geometry is recovered; (2) knowledge about the camera-to-ground coordinate transformation is not required; (3) knowledge about vehicle (or camera) motion is not required; (4) the method is valid for the vehicle (or camera) undergoing general six-degree-of-freedom motion; (5) the error sources involved are reduced to a minimum, because the only information required is one component of optical flow. Numerous experiments using both synthetic and real image data are presented. Our methods are demonstrated in both ground and air vehicle scenarios.  相似文献   

20.
We consider the motion of a five-link crawling robot in an environment with obstacles located discretely. The robot is fitted with special controlled friction elements for the periodic fixation of links on the surface and has a possibility of the spatial configuration change due to a detachment of the end links from the surface. One of the possible crawling modes is analyzed as the end links are detached from the surface and the adjacent links rotate by a given angle in the plane of motion without interaction with obstacles. As the result of simulating by the numerical method, we establish the dependence between the average velocity of the plant (and its maneuverability between obstacles) and control values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号